
 AWS Lambda JAVA8 Training Course Online

Curriculum 5 Days

Day - 1 Day - 2

 Understanding Serverless Functions
o Contextualizing Serverless

o Key Elements of Serverless Functions

o Looking at Serverless Function Providers

o Demo Overviews - What Are You Building?

 Working with AWS
o Introduction to the AWS Free Tier

o AWS Free Tier Service Walkthrough

o Overview of AWS Identity and Access Management (IAM)

o Creating and Managing AWS Identity and Access Management Policies

 Starting with Lambda Functions
o Considerations and Limitations for Lambda Functions

o Lambda Prerequisites

o Creating and Configuring Your First Lambda Function

o Monitoring and Alerting for Your First Lambda Function

 Using Lambda and Third Party APIs
o Planning Function Scope and Dependencies

o Credential Storage with the AWS Key Management Service

o Gathering API Keys and Preparing Your Environment

o Working with External Libraries, Sensitive Credentials, and Your Lambda
Function Package

o Deploying Your Function Package and Configuring Your Twitter Bot

Day - 3

 Lambda Expressions and Functional Interfaces
o Project and Resource Overview

o Installing Jinja and Configuring IAM and SES

o Uploading Templates to S3 and Creating Cloudwatch Events with the AWS
Command Line

o Creating a Dynamic Lambda Handler

o Testing Your Lambda Function with the AWS Command Line

o Understanding Function Package Setup

o Function Deployment and Configuration with the AWS Command Line

 Using ELB to Scale Applications
o Lambda Expression: Introduction, Instances of Anonymous Classes

o Lambda Expression: Passing Code as a Parameter

o Let Us Write Our First, Simple Lambda Expressions

o Lambda Expression: Remarks and Precisions

o Method References: A First Example with an Instance Method

o Method References: A Second Example with a Static Method

o

Day - 4

 Writing Data Processing Functions with Lambdas in Java
o Introduction to the Module

o What Is a Functional Interface? The Predicate Example

o How to Implement a Functional Interface with a Lambda Expression

o How Does the Compiler Recognize the Type of a Lambda Expression?

o A Lambda Is Still an Interface with Usable Methods

o Functional Interface: The Complete and Exact Definition

o How to Use the @FunctionalInterface Annotation

o The Four Categories of the java.util.function Package

o First Category: The Consumers

o Second Category: The Supplier

o Third Category: The Functions

o Fourth Category: The Predicates

o Functional Interfaces for Java Primitive Types

o Introduction to the Live Coding Section: The Predicate Example

o Writing and Using a First, Simple Predicate Lambda Expression

o Chaining Predicates with the AND Boolean Operation

o Adding a and() Method on the Predicate Functional Interface

o Implementing the and() Default method on the Predicate Interface

o Adding a or() Default Method on the Predicate Interface

o Creating Predicates with a Static Call on a Functional Interface

o Making the isEqualsTo() Method Generic of the Predicate Interface

 Data Processing Using Lambdas and the Collection Framework
o Introduction to the Module

o First Methods on Iterable, Collection and List

o First Method on Map: forEach()

o More Methods on Map: getOrDefault()

o More Methods on Map: putIfAbsent()

o More Methods on Map: replace() and replaceAll()

o New Pattern on Map: remove()

o New Patterns on Map: The compute() method

o New Patterns on Map: computeIfAbsent(), computeIfPres ent()

o Building Maps of Maps and Maps of Lists with computeIfAbsent()

o New Pattern on Map: The merge() method

o Using merge() to Merge Two Maps Together

o Live Coding Session Introduction, forEach() in Action

o Methods removeIf(), replaceAll(), sort() in Action

o Setting Default Value for map.get(): getOrDefault()

o Adding Default key / value pairs: putIfAbsent, computeIfAbsent

o Merging Maps with the map.merge() Method

o Merging Maps: Analysis of the Result

o Live Coding and Module Wrap-up

Day - 5

 Implementing Map Filter Reduce Using Lambdas and Collections
o Introduction to the Module

o Computing the Average of People Older than 20, Taken From a List

o Map / filter / reduce: A Precise Explanation

o A First Implementation, in the JDK7 Way

o A Closer Look at the Reduction Step: How Does it Work?

o Parallel Implementation of the Reduction Step

o First Caveat: Non-associative Reduction Operations

o How to Detect Non-associative Reduction Operations

o Second Caveat: Reduction of a Singleton

o Second Caveat: Reduction of a Set with Several Elements

o Second Caveat: Reduction That Do Not Have Identity Element

o Live Coding: Setting up the Environment

o Simulating Parallel Computation of a Non -associative Reduction

o Non-associative Reduction: The Average Reduction Operation

o Computing a Max: Reduction with No Identity Element

o Live Coding Wrap-up

o Using Optional to Handle Reductions with No Identity Element

o Wrap-up on the Reduction Step

o Implementation in the JDK7 Way: a Closer Look

o CPU Load and Memory Footprint Evaluations

o Example of an all Match Reduction Operation: Lost Optimizations

o Why is this First, Naive Implementation Should be Avoided

o A First Glimpse at the Stream API

 The Stream API, How to Build Streams, First Patterns
o Introduction to the Module

o A First Technical Definit ion of the Stream Interface

o First Definit ions of the Concept of Stream

o The Notion of Unbounded Stream

o How to Build Streams: Empty Streams, Singletons, varargs

o How to Build Streams: The Generator and Iterator Pattern

o How to Build Streams on Strings, Regular Expressions, and Text Files

o The Stream.Builder Pattern

o The map / filter / reduce Pattern Written with a Stream

o A Second Example of the ap / filter / reduce Pattern on Streams

o Intermediate and Terminal Calls on Streams: peek() and forEach()

o How to Tell an Intermediate Call from a Terminal Call

o Selecting Ranges of Data in Streams: skip() and limit()

o Simple Reductions: Matchers, Short -circuiting Reductions

o Finder Reductions, Use of Optional

o Example of Finder Reductions: find First(), find Any()

o General Reductions: Use of the reduce () Method

o Live Coding Session Introduction

o Example of a First Simple Stream Built on a vararg

o Building a Stream: The Generate Pattern, Use of Limit()

o Building a Stream: The Iterate Pattern

o Building Streams of Random Numbers Using Random.ints()

o Live Coding Session Wrap-up

