
Maven by Example i

Maven by Example

Ed. 0.7

Maven by Example ii

Contents

1 Introducing Apache Maven 1

1.1 Maven. . . What is it? . 1

1.2 Convention Over Configuration . 2

1.3 A Common Interface . 3

1.4 Universal Reuse through Maven Plugins . 3

1.5 Conceptual Model of a “Project” . 4

1.6 Is Maven an alternative to XYZ? . 5

1.7 Comparing Maven with Ant . 6

2 Installing Maven 10

2.1 Verify your Java Installation . 10

2.2 Downloading Maven . 11

2.3 Installing Maven . 11

Maven by Example iii

2.3.1 Installing Maven on Linux, BSD and Mac OS X 11

2.3.2 Installing Maven on Microsoft Windows . 12

2.3.2.1 Setting Environment Variables . 12

2.4 Testing a Maven Installation . 13

2.5 Maven Installation Details . 13

2.5.1 User-Specific Configuration and Repository . 14

2.5.2 Upgrading a Maven Installation . 15

2.6 Uninstalling Maven . 15

2.7 Getting Help with Maven . 15

2.8 About the Apache Software License . 16

3 A Simple Maven Project 17

3.1 Introduction . 17

3.1.1 Downloading this Chapter’s Example . 17

3.2 Creating a Simple Project . 18

3.3 Building a Simple Project . 21

3.4 Simple Project Object Model . 22

3.5 Core Concepts . 23

3.5.1 Maven Plugins and Goals . 23

Maven by Example iv

3.5.2 Maven Lifecycle . 25

3.5.3 Maven Coordinates . 28

3.5.4 Maven Repositories . 31

3.5.5 Maven’s Dependency Management . 33

3.5.6 Site Generation and Reporting . 35

3.6 Summary . 35

4 Customizing a Maven Project 36

4.1 Introduction . 36

4.1.1 Downloading this Chapter’s Example . 36

4.2 Defining the Simple Weather Project . 37

4.2.1 Yahoo Weather RSS . 37

4.3 Creating the Simple Weather Project . 37

4.4 Customize Project Information . 40

4.5 Add New Dependencies . 41

4.6 Simple Weather Source Code . 43

4.7 Add Resources . 49

4.8 Running the Simple Weather Program . 50

4.8.1 The Maven Exec Plugin . 52

Maven by Example v

4.8.2 Exploring Your Project Dependencies . 52

4.9 Writing Unit Tests . 54

4.10 Adding Test-scoped Dependencies . 56

4.11 Adding Unit Test Resources . 57

4.12 Executing Unit Tests . 59

4.12.1 Ignoring Test Failures . 60

4.12.2 Skipping Unit Tests . 61

4.13 Building a Packaged Command Line Application . 62

4.13.1 Attaching the Assembly Goal to the Package Phase 64

5 A Simple Web Application 66

5.1 Introduction . 66

5.1.1 Downloading this Chapter’s Example . 66

5.2 Defining the Simple Web Application . 67

5.3 Creating the Simple Web Project . 67

5.4 Configuring the Jetty Plugin . 69

5.5 Adding a Simple Servlet . 71

5.6 Adding J2EE Dependencies . 73

5.7 Conclusion . 75

Maven by Example vi

6 A Multi-Module Project 76

6.1 Introduction . 76

6.1.1 Downloading this Chapter’s Example . 76

6.2 The Simple Parent Project . 77

6.3 The Simple Weather Module . 78

6.4 The Simple Web Application Module . 81

6.5 Building the Multimodule Project . 83

6.6 Running the Web Application . 85

7 Multi-Module Enterprise Project 86

7.1 Introduction . 86

7.1.1 Downloading this Chapter’s Example . 86

7.1.2 Multi-Module Enterprise Project . 87

7.1.3 Technology Used in this Example . 89

7.2 The Simple Parent Project . 90

7.3 The Simple Model Module . 91

7.4 The Simple Weather Module . 96

7.5 The Simple Persist Module . 100

7.6 The Simple Web Application Module . 107

Maven by Example vii

7.7 Running the Web Application . 118

7.8 The Simple Command Module . 120

7.9 Running the Simple Command . 127

7.10 Conclusion . 130

7.10.1 Programming to Interface Projects . 130

8 Optimizing and Refactoring POMs 132

8.1 Introduction . 132

8.2 POM Cleanup . 133

8.3 Optimizing Dependencies . 133

8.4 Optimizing Plugins . 138

8.5 Optimizing with the Maven Dependency Plugin . 139

8.6 Final POMs . 142

8.7 Conclusion . 151

9 Creative Commons License 152

10 Copyright 154

Maven by Example viii

Preface

Maven is a build tool, a project management tool, an abstract container for running build tasks. It is a
tool that has shown itself indispensable for projects that graduate beyond the simple and need to start
finding consistent ways to manage and build large collections of interdependent modules and libraries
which make use of tens or hundreds of third-party components. It is a tool that has removed much of the
burden of third-party dependency management from the daily work schedule of millions of engineers, and
it has enabled many organizations to evolve beyond the toil and struggle of build management into a new
phase where the effort required to build and maintain software is no longer a limiting factor in software
design.

This work is the first attempt at a comprehensive title on Maven. It builds upon the combined experience
and work of the authors of all previous Maven titles, and you should view it not as a finished work but
as the first edition in a long line of updates to follow. While Maven has been around for a few years,
the authors of this book believe that it has just begun to deliver on the audacious promises it makes. The
authors, and company behind this book, Sonatype, believe that the publishing of this book marks the
beginning of a new phase of innovation and development surrounding Maven and the software ecosystem
that surrounds it.

Acknowledgements

Sonatype would like to thank the following contributors. The people listed below have provided feedback
which has helped improve the quality of this book. Thanks to Raymond Toal, Steve Daly, Paul Strack, Paul
Reinerfelt, Chad Gorshing, Marcus Biel, Brian Dols, Mangalaganesh Balasubramanian, Marius Kruger,
Chris Maki, Matthew McCollough, Matt Raible, and Mark Stewart. Special thanks to Joel Costigliola for
helping to debug and correct the Spring web chapter. Stan Guillory was practically a contributing author
given the number of corrections he posted to the book’s Get Satisfaction. Thank you Stan. Special thanks
to Richard Coasby of Bamboo for acting as the provisional grammar consultant.

http://www.sonatype.com

Maven by Example ix

Thanks to our contributing authors including Eric Redmond.

Thanks to the following contributors who reported errors or even contributed fixes: Paco Soberón, Ray
Krueger, Steinar Cook, Henning Saul, Anders Hammar, “george_007”, “ksangani”, Niko Mahle, Arun
Kumar, Harold Shinsato, “mimil”, “-thrawn-”, Matt Gumbley, Andrew Janke.

If you see your Get Satisfaction username in this list, and you would like it replaced with your real name,
send an email to book@sonatype.com.

Special thanks to Grant Birchmeier for taking the time to proofread portions of the book and file extremely
detailed feedback.

How to Contribute

The source code for this book can be found on the official GitHub repository and we accept pull requests
with improvements.

mailto:book@sonatype.com
https://github.com/sonatype/maven-example-en

Maven by Example 1 / 155

Chapter 1

Introducing Apache Maven

This book is an introduction to Apache Maven which uses a set of examples to demonstrate core concepts.
Starting with a simple Maven project which contains a single class and a single unit test, this book slowly
develops an enterprise multi-module project which interacts with a database, interacts with a remote API,
and presents a simple web application.

1.1 Maven. . . What is it?

The answer to this question depends on your own perspective. The great majority of Maven users are
going to call Maven a “build tool”: a tool used to build deployable artifacts from source code. Build
engineers and project managers might refer to Maven as something more comprehensive: a project man-
agement tool. What is the difference? A build tool such as Ant is focused solely on preprocessing,
compilation, packaging, testing, and distribution. A project management tool such as Maven provides a
superset of features found in a build tool. In addition to providing build capabilities, Maven can also run
reports, generate a web site, and facilitate communication among members of a working team.

A more formal definition of Apache Maven: Maven is a project management tool which encompasses
a project object model, a set of standards, a project lifecycle, a dependency management system, and
logic for executing plugin goals at defined phases in a lifecycle. When you use Maven, you describe your
project using a well-defined project object model, Maven can then apply cross-cutting logic from a set of
shared (or custom) plugins.

http://maven.apache.org

Maven by Example 2 / 155

Don’t let the fact that Maven is a “project management” tool scare you away. If you were just looking
for a build tool, Maven will do the job. In fact, the first few chapters of this book will deal with the most
common use case: using Maven to build and distribute your project.

1.2 Convention Over Configuration

Convention over configuration is a simple concept: Systems, libraries, and frameworks should assume
reasonable defaults. Without requiring unnecessary configuration, systems should “just work”. Popular
frameworks such as Ruby on Rails and EJB3 have started to adhere to these principles in reaction to
the configuration complexity of frameworks such as the initial EJB 2.1 specifications. An illustration of
convention over configuration is something like EJB3 persistence: all you need to do to make a particular
bean persistent is to annotate that class with @Entity. The framework assumes table and column names
based on the name of the class and the names of the properties. Hooks are provided for you to override
these default, assumed names if the need arises, but, in most cases, you will find that using the framework-
supplied defaults results in a faster project execution.

Maven incorporates this concept by providing sensible default behavior for projects. Without customiza-
tion, source code is assumed to be in ${basedir}/src/main/java and resources are assumed
to be in ${basedir}/src/main/resources. Tests are assumed to be in ${basedir}/src/
test, and a project is assumed to produce a JAR file. Maven assumes that you want the compile byte-
code to ${basedir}/target/classes and then create a distributable JAR file in ${basedir}/
target. While this might seem trivial, consider the fact that most Ant-based builds have to define the
locations of these directories. Ant doesn’t ship with any built-in idea of where source code or resources
might be in a project; you have to supply this information. Maven’s adoption of convention over con-
figuration goes farther than just simple directory locations. Maven’s core plugins apply a common set
of conventions for compiling source code, packaging distributions, generating web sites, and many other
processes. Maven’s strength comes from the fact that it is “opinionated”; it has a defined life-cycle and
a set of common plugins that know how to build and assemble software. If you follow the conventions,
Maven will require almost zero effort - just put your source in the correct directory, and Maven will take
care of the rest.

One side effect of using systems that follow “convention over configuration” is that end-users might feel
that they are forced to use a particular methodology or approach. While it is certainly true that Maven has
some core opinions that shouldn’t be challenged, most of the defaults can be customized. For example,
the location of a project’s source code and resources can be customized, names of JAR files can be
customized, and through the development of custom plugins, almost any behavior can be tailored to your
specific environment’s requirements. If you don’t care to follow convention, Maven will allow you to
customize defaults in order to adapt to your specific requirements.

http://www.rubyonrails.org/

Maven by Example 3 / 155

1.3 A Common Interface

Before Maven provided a common interface for building software, every single project had someone ded-
icated to managing a fully customized build system. Developers had to take time away from developing
software to learn about the idiosyncrasies of each new project they wanted to contribute to. In 2001,
you’d have a completely different approach to building a project like Turbine than you would to building
a project like Tomcat. If a new source code analysis tool came out that would perform static analysis on
source code, or if someone developed a new unit testing framework, everybody would have to drop what
they were doing and figure out how to fit it into each project’s custom build environment. How do you run
unit tests? There were a thousand different answers. This environment was characterized by a thousand
endless arguments about tools and build procedures. The age before Maven was an age of inefficiency,
the age of the “Build Engineer”.

Today, most open source developers have used or are currently using Maven to manage new software
projects. This transition is less about developers moving from one build tool to another and more about
developers starting to adopt a common interface for project builds. As software systems have become
more modular, build systems have become more complex, and the number of projects has skyrocketed.
Before Maven, when you wanted to check out a project like Apache ActiveMQ or Apache ServiceMix
from Subversion and build it from source, you really had to set aside about an hour to figure out the
build system for each particular project. What does the project need to build? What libraries do I need to
download? Where do I put them? What goals can I execute in the build? In the best case, it took a few
minutes to figure out a new project’s build, and in the worst cases (like the old Servlet API implementation
in the Jakarta Project), a project’s build was so difficult it would take multiple hours just to get to the point
where a new contributor could edit source and compile the project. These days, you check it out from
source, and you run mvn install.

While Maven provides an array of benefits including dependency management and reuse of common build
logic through plugins, the core reason why it has succeeded is that it has defined a common interface for
building software. When you see that a project like Apache ActiveMQ uses Maven, you can assume that
you’ll be able to check it out from source and build it with mvn install without much hassle. You
know where the ignition keys goes, you know that the gas pedal is on the right side, and the brake is on
the left.

1.4 Universal Reuse through Maven Plugins

Plugins are more than just a trick to minimize the download size of the Maven distribution. Plugins add
new behavior to your project’s build. Maven retrieves both dependencies and plugins from the remote
repository, allowing for universal reuse of build logic.

http://turbine.apache.org/
http://tomcat.apache.org
http://activemq.apache.org
http://servicemix.apache.org
http://activemq.apache.org

Maven by Example 4 / 155

The Maven Surefire plugin is the plugin that is responsible for running unit tests. Somewhere between
version 1.0 and the version that is in wide use today someone decided to add support for the TestNG
unit testing framework in addition to the support for JUnit. This upgrade happened in a way that didn’t
break backwards compatibility. If you were using the Surefire plugin to compile and execute JUnit 3 unit
tests, and you upgraded to the most recent version of the Surefire plugin, your tests continued to execute
without fail. But, you gained new functionality; if you want to execute unit tests in TestNG you now
have that ability. You also gained the ability to run annotated JUnit 4 unit tests. You gained all of these
capabilities without having to upgrade your Maven installation or install new software. Most importantly,
nothing about your project had to change aside from a version number for a plugin in a single Maven
configuration file called the Project Object Model (POM).

It is this mechanism that affects much more than the Surefire plugin. Maven has plugins for everything
from compiling Java code, to generating reports, to deploying to an application server. Maven has ab-
stracted common build tasks into plugins which are maintained centrally and shared universally. If the
state-of-the-art changes in any area of the build, if some new unit testing framework is released or if some
new tool is made available, you don’t have to be the one to hack your project’s custom build system to
support it. You benefit from the fact that plugins are downloaded from a remote repository and maintained
centrally. This is what is meant by universal reuse through Maven plugins.

1.5 Conceptual Model of a “Project”

Maven maintains a model of a project. You are not just compiling source code into bytecode, you are
developing a description of a software project and assigning a unique set of coordinates to a project. You
are describing the attributes of the project. What is the project’s license? Who develops and contributes to
the project? What other projects does this project depend upon? Maven is more than just a “build tool”,
it is more than just an improvement on tools like make and Ant, it is a platform that encompasses a new
semantics related to software projects and software development. This definition of a model for every
project enables such features as:

Dependency Management
Because a project is defined by a unique set of coordinates consisting of a group identifier, an
artifact identifier, and a version, projects can now use these coordinates to declare dependencies.

Remote Repositories
Related to dependency management, we can use the coordinates defined in the Maven Project
Object Model (POM) to create repositories of Maven artifacts.

Universal Reuse of Build Logic
Plugins contain logic that works with the descriptive data and configuration parameters defined
in Project Object Model (POM); they are not designed to operate upon specific files in known
locations.

Maven by Example 5 / 155

Tool Portability / Integration
Tools like Eclipse, NetBeans, and IntelliJ now have a common place to find information about a
project. Before the advent of Maven, every IDE had a different way to store what was essentially
a custom Project Object Model (POM). Maven has standardized this description, and while each
IDE continues to maintain custom project files, they can be easily generated from the model.

Easy Searching and Filtering of Project Artifacts
Tools like Nexus allow you to index and search the contents of a repository using the information
stored in the POM.

1.6 Is Maven an alternative to XYZ?

So, sure, Maven is an alternative to Ant, but Apache Ant continues to be a great, widely-used tool. It
has been the reigning champion of Java builds for years, and you can integrate Ant build scripts with
your project’s Maven build very easily. This is a common usage pattern for a Maven project. On the
other hand, as more and more open source projects move to Maven as a project management platform,
working developers are starting to realize that Maven not only simplifies the task of build management, it
is helping to encourage a common interface between developers and software projects. Maven is more of
a platform than a tool, while you could consider Maven an alternative to Ant, you are comparing apples
to oranges. “Maven” includes more than just a build tool.

This is the central point that makes all of the Maven vs. Ant, Maven vs. Buildr, Maven vs. Gradle
arguments irrelevant. Maven isn’t totally defined by the mechanics of your build system. It isn’t about
scripting the various tasks in your build as much as it is about encouraging a set of standards, a common
interface, a life-cycle, a standard repository format, a standard directory layout, etc. It certainly isn’t
about what format the POM happens to be in (XML vs. YAML vs. Ruby). Maven is much larger than
that, and Maven refers to much more than the tool itself. When this book talks of Maven, it is referring to
the constellation of software, systems, and standards that support it. Buildr, Ivy, Gradle, all of these tools
interact with the repository format that Maven helped create, and you could just as easily use a repository
manager like Nexus to support a build written entirely in Ant.

While Maven is an alternative to many of these tools, the community needs to evolve beyond seeing
technology as a zero-sum game between unfriendly competitors in a competition for users and developers.
This might be how large corporations relate to one another, but it has very little relevance to the way that
open source communities work. The headline “Who’s winning? Ant or Maven?” isn’t very constructive.
If you force us to answer this question, we’re definitely going to say that Maven is a superior alternative
to Ant as a foundational technology for a build; at the same time, Maven’s boundaries are constantly
shifting and the Maven community is constantly trying to seek out new ways to become more ecumenical,
more inter-operable, more cooperative. The core tenets of Maven are declarative builds, dependency
management, repository managers, and universal reuse through plugins, but the specific incarnation of
these ideas at any given moment is less important than the sense that the open source community is

http://ant.apache.org

Maven by Example 6 / 155

collaborating to reduce the inefficiency of “enterprise-scale builds”.

1.7 Comparing Maven with Ant

The authors of this book have no interest in creating a feud between Apache Ant and Apache Maven,
but we are also cognizant of the fact that most organizations have to make a decision between the two
standard solutions: Apache Ant and Apache Maven. In this section, we compare and contrast the tools.

Ant excels at build process; it is a build system modeled after make with targets and dependencies. Each
target consists of a set of instructions which are coded in XML. There is a copy task and a javac task
as well as a jar task. When you use Ant, you supply Ant with specific instructions for compiling and
packaging your output. Look at the following example of a simple build.xml file:

A Simple Ant build.xml File

<project name="my-project" default="dist" basedir=".">
<description>simple example build file</description>

<!-- set global properties for this build -->
<property name="src" location="src/main/java"/>
<property name="build" location="target/classes"/>
<property name="dist" location="target"/>

<target name="init">
<!-- Create the time stamp -->
<tstamp/>
<!-- Create the build directory structure used by compile -->
<mkdir dir="${build}"/>

</target>

<target name="compile" depends="init"
description="compile the source " >

<!-- Compile the java code from ${src} into ${build} -->
<javac srcdir="${src}" destdir="${build}"/>

</target>

<target name="dist" depends="compile"
description="generate the distribution" >

<!-- Create the distribution directory -->
<mkdir dir="${dist}/lib"/>

<!-- Ouput into ${build} into a MyProject-${DSTAMP}.jar file -->
<jar jarfile="${dist}/lib/MyProject-${DSTAMP}.jar"

Maven by Example 7 / 155

basedir="${build}"/>
</target>

<target name="clean"
description="clean up" >

<!-- Delete the ${build} and ${dist} directory trees -->
<delete dir="${build}"/>
<delete dir="${dist}"/>

</target>
</project>

In this simple Ant example, you can see how you have to tell Ant exactly what to do. There is a compile
goal which includes the javac task that compiles the source in the src/main/java directory to the
target/classes directory. You have to tell Ant exactly where your source is, where you want the resulting
bytecode to be stored, and how to package this all into a JAR file. While there are some recent develop-
ments that help make Ant less procedural, a developer’s experience with Ant is in coding a procedural
language written in XML.

Contrast the previous Ant example with a Maven example. In Maven, to create a JAR file from some
Java source, all you need to do is create a simple pom.xml, place your source code in ${basedir}/
src/main/java and then run mvn install from the command line. The example Maven pom.
xml that achieves the same results as the simple Ant file listed in A Simple Ant build.xml File is shown
in A Sample Maven pom.xml.

A Sample Maven pom.xml

<project>
<modelVersion>4.0.0</modelVersion>
<groupId>org.sonatype.mavenbook</groupId>
<artifactId>my-project</artifactId>
<version>1.0-SNAPSHOT</version>

</project>

That’s all you need in your pom.xml. Running mvn install from the command line will process
resources, compile source, execute unit tests, create a JAR, and install the JAR in a local repository for
reuse in other projects. Without modification, you can run mvn site and then find an index.html
file in target/site that contains links to JavaDoc and a few reports about your source code.

Admittedly, this is the simplest possible example project containing nothing more than some source code
and producing a simple JAR. It is a project which closely follows Maven conventions and doesn’t require
any dependencies or customization. If we wanted to start customizing the behavior, our pom.xml is
going to grow in size, and in the largest of projects you can see collections of very complex Maven POMs
which contain a great deal of plugin customization and dependency declarations. But, even when your

Maven by Example 8 / 155

project’s POM files become more substantial, they hold an entirely different kind of information from
the build file of a similarly sized project using Ant. Maven POMs contain declarations: “This is a JAR
project”, and “The source code is in src/main/java”. Ant build files contain explicit instructions:
“This is project”, “The source is in src/main/java”, “Run javac against this directory”, “Put the
results in target/classes”, “Create a JAR from the . . . ”, etc. Where Ant had to be explicit about
the process, there was something “built-in” to Maven that just knew where the source code was and how
it should be processed.

The differences between Ant and Maven in this example are:

Apache Ant

• Ant doesn’t have formal conventions like a common project directory structure or default behav-
ior. You have to tell Ant exactly where to find the source and where to put the output. Informal
conventions have emerged over time, but they haven’t been codified into the product.

• Ant is procedural. You have to tell Ant exactly what to do and when to do it. You have to tell it
to compile, then copy, then compress.

• Ant doesn’t have a lifecycle. You have to define goals and goal dependencies. You have to attach
a sequence of tasks to each goal manually.

Apache Maven

• Maven has conventions. It knows where your source code is because you followed the convention.
Maven’s Compiler plugin put the bytecode in target/classes, and it produces a JAR file in
target.

• Maven is declarative. All you had to do was create a pom.xml file and put your source in the
default directory. Maven took care of the rest.

• Maven has a lifecycle which was invoked when you executed mvn install. This command
told Maven to execute a series of sequential lifecycle phases until it reached the install lifecycle
phase. As a side effect of this journey through the lifecycle, Maven executed a number of default
plugin goals which did things like compile and create a JAR.

Maven has built-in intelligence about common project tasks in the form of Maven plugins. If you wanted
to write and execute unit tests, all you would need to do is write the tests, place them in ${basedir}/
src/test/java, add a test-scoped dependency on either TestNG or JUnit, and run mvn test. If
you wanted to deploy a web application and not a JAR, all you would need to do is change your project
type to war and put your docroot in ${basedir}/src/main/webapp. Sure, you can do all of this
with Ant, but you will be writing the instructions from scratch. In Ant, you would first have to figure out
where the JUnit JAR file should be. Then you would have to create a classpath that includes the JUnit
JAR file. Then you would tell Ant where it should look for test source code, write a goal that compiles
the test source to bytecode, and execute the unit tests with JUnit.

Maven by Example 9 / 155

Without supporting technologies like antlibs and Ivy (and even with these supporting technologies), Ant
has the feeling of a custom procedural build. An efficient set of Maven POMs in a project which adheres
to Maven’s assumed conventions has surprisingly little XML compared to the Ant alternative. Another
benefit of Maven is the reliance on widely-shared Maven plugins. Everyone uses the Maven Surefire
plugin for unit testing, and if someone adds support for a new unit testing framework, you can gain new
capabilities in your own build by just incrementing the version of a particular Maven plugin in your
project’s POM.

The decision to use Maven or Ant isn’t a binary one, and Ant still has a place in a complex build. If
your current build contains some highly customized process, or if you’ve written some Ant scripts to
complete a specific process in a specific way that cannot be adapted to the Maven standards, you can still
use these scripts with Maven. Ant is made available as a core Maven plugin. Custom Maven plugins can
be implemented in Ant, and Maven projects can be configured to execute Ant scripts within the Maven
project lifecycle.

Maven by Example 10 / 155

Chapter 2

Installing Maven

The process of installing Apache Maven is very simple. This chapter covers it in detail. Your only
prerequisite is an installed Java Development Kit (JDK). If you are just interested in installation, you can
move on to the rest of the book after reading through Section 2.2 and Section 2.3. If you are interested
in the details of your Maven installation, this entire chapter will give you an overview of what you’ve
installed and the meaning of the Apache Software License, Version 2.0.

2.1 Verify your Java Installation

The latest version of Maven currently requires the usage of Java 7 or higher. While older Maven versions
can run on older Java versions, this book assumes that you are running at least Java 7. Go with the most
recent stable Java Development Kit (JDK) available for your operating system.

% java -version
java version "1.7.0_71"
Java(TM) SE Runtime Environment (build 1.7.0_71-b14)
Java HotSpot(TM) 64-Bit Server VM (build 24.71-b01, mixed mode)

Tip
More details about Java version required for different Maven versions can be found on the Maven site.

http://maven.apache.org/docs/history.html

Maven by Example 11 / 155

Maven works with all certified Java™ compatible development kits, and a few non-certified implemen-
tations of Java. The examples in this book were written and tested against the official Java Development
Kit releases downloaded from the Oracle web site.

2.2 Downloading Maven

You can download Apache Maven from the project website at http://maven.apache.org/download.html.

When downloading Maven, make sure you choose the latest version of Apache Maven from the Maven
website. The latest version of Maven when this book was written was Maven 3.3.3. If you are not
familiar with the Apache Software License, you should familiarize yourself with the terms of the license
before you start using the product. More information on the Apache Software License can be found in
Section 2.8.

2.3 Installing Maven

There are wide differences between operating systems such as Mac OS X and Microsoft Windows, and
there are subtle differences between different versions of Windows. Luckily, the process of installing
Maven on all of these operating systems is relatively painless and straightforward. The following sections
outline the recommended best-practice for installing Maven on a variety of operating systems.

2.3.1 Installing Maven on Linux, BSD and Mac OS X

Download the current release of Maven from http://maven.apache.org/download.html. Choose a format
that is convenient for you to work with. Pick an appropriate place for it to live, and expand the archive
there. If you expanded the archive into the directory /usr/local/apache-maven-3.0.5, you
may want to create a symbolic link to make it easier to work with and to avoid the need to change any
environment configuration when you upgrade to a newer version:

/usr/local % cd /usr/local
/usr/local % ln -s apache-maven-3.0.5 maven
/usr/local % export PATH=/usr/local/maven/bin:$PATH

http://maven.apache.org/download.html
http://maven.apache.org/download.html

Maven by Example 12 / 155

Once Maven is installed, you need to add its bin directory in the distribution (in this example, /usr/
local/maven/bin) to your command path.

You’ll need to add the PATH configuration to a script that will run every time you login. To do this, add
the following lines to .bash_login or .profile.

export PATH=/usr/local/maven/bin:${PATH}

Once you’ve added these lines to your own environment, you will be able to run Maven from the command
line.

Note
These installation instructions assume that you are running bash.

2.3.2 Installing Maven on Microsoft Windows

Installing Maven on Windows is very similar to installing Maven on Mac OS X, the main differences
being the installation location and the setting of an environment variable. This book assumes a Maven
installation directory of C:\Program Files\apache-maven-3.0.5, but it won’t make a differ-
ence if you install Maven in another directory as long as you configure the proper environment variable.
Once you’ve unpacked Maven to the installation directory, you will need to update the PATH environment
variable:

C:\Users\tobrien > set PATH="c:\Program Files\apache-maven-3.0.5\bin";% ←↩
PATH%

Setting this environment variable on the command line will allow you to run Maven in your current
session. Unless you add them to the System or User environment variables through the Control Panel,
you’ll have to execute these two lines every time you log into your system. You should modify both of
these variables through the Control Panel in Microsoft Windows.

2.3.2.1 Setting Environment Variables

• Go into the Control Panel

• Select System

Maven by Example 13 / 155

• Go in Advanced tab and click on Environment Variables.

• Click on the Path variable in the lower System variables section and click the Edit button.

• Add the string "C:\Program Files\apache-maven-3.0.5\bin;" in the Variable value field
to the front of the existing value and click on the OK button in this and the following dialogs.

2.4 Testing a Maven Installation

Once Maven is installed, you can check the version by running mvn -v from the command line. If
Maven has been installed, you should see something resembling the following output.

$ mvn -v
Apache Maven 3.0.5 (r01de14724cdef164cd33c7c8c2fe155faf9602da; 2013-02-19 ←↩

05:51:28-0800)
Maven home: /usr/local/maven
Java version: 1.7.0_75, vendor: Oracle Corporation
Java home: /Library/Java/JavaVirtualMachines/jdk1.7.0_75.jdk/Contents/Home ←↩

/jre
Default locale: en_US, platform encoding: UTF-8
OS name: "mac os x", version: "10.8.5", arch: "x86_64", family: "mac"

If you see this output, you know that Maven is available and ready to be used. If you do not see this
output, and your operating system cannot find the mvn command, make sure that your PATH environment
variable and M2_HOME environment variable have been properly set.

2.5 Maven Installation Details

Maven’s download measures in at a few megabyte only. It has attained such a slim download size because
the core of Maven has been designed to retrieve plugins and dependencies from a remote repository on-
demand. When you start using Maven, it will start to download plugins to a local repository described in
Section 2.5.1. In case you are curious, let’s take a quick look at what is in Maven’s installation directory.

/usr/local/maven $ ls -p1
LICENSE.txt
NOTICE
README.txt
bin/
boot/

Maven by Example 14 / 155

conf/
lib/

LICENSE.txt contains the software license for Apache Maven. The lib/ directory contains a the JAR
files that contains the core of Maven.

Note
Unless you are working in a shared Unix environment, you should avoid customizing the settings.
xml in conf. Altering the global settings.xml file in the Maven installation itself is usually un-
necessary and it tends to complicate the upgrade procedure for Maven as you’ll have to remember to
copy the customized settings.xml from the old Maven installation to the new installation. If you
need to customize settings.xml, you should be editing your own settings.xml in ~/.m2/
settings.xml.

2.5.1 User-Specific Configuration and Repository

Once you start using Maven extensively, you’ll notice that Maven has created some local user-specific
configuration files and a local repository in your home directory. In ~/.m2 there will be:

~/.m2/settings.xml
A file containing user-specific configuration for authentication, repositories, and other information
to customize the behavior of Maven.

~/.m2/repository/
This directory contains your local Maven repository. When you download a dependency from a
remote Maven repository, Maven stores a copy of the dependency in your local repository.

Note
In Unix (and OS X), your home directory will be referred to using a tilde (i.e. ~/bin refers to /home/
tobrien/bin). In Windows, we will also be using ~ to refer to your home directory. In Windows XP,
your home directory is C:\Documents and Settings\tobrien, and in Windows Vista, your
home directory is C:\Users\tobrien. From this point forward, you should translate paths such as
~/m2 to your operating system’s equivalent.

Maven by Example 15 / 155

2.5.2 Upgrading a Maven Installation

If you’ve installed Maven on a Mac OS X or Unix machine according to the details in Section 2.3.1, it
should be easy to upgrade to newer versions of Maven when they become available. Simply install the
newer version of Maven (/usr/local/maven-3.future) next to the existing version of Maven (/usr/local/maven-
3.0.3). Then switch the symbolic link /usr/local/maven from /usr/local/maven-3.0.3 to
/usr/local/maven-3.future. Since you’ve already set your PATH variable to point to /usr/
local/maven, you won’t need to change any environment variables.

If you have installed Maven on a Windows machine, simply unpack Maven to C:\Program Files\
maven-3.future and update your PATH variable.

Note
If you have any customizations to the global settings.xml in conf, you will need to copy this
settings.xml to the conf directory of the new Maven installation.

2.6 Uninstalling Maven

Most of the installation instructions involve unpacking of the Maven distribution archive in a directory
and setting of various environment variables. If you need to remove Maven from your computer, all you
need to do is delete your Maven installation directory and remove the environment variables. You will
also want to delete the ~/.m2 directory as it contains your local repository.

2.7 Getting Help with Maven

While this book aims to be a comprehensive reference, there are going to be topics we will miss and
special situations and tips which are not covered. While the core of Maven is very simple, the real work
in Maven happens in the plugins, and there are too many plugins available to cover them all in one book.
You are going to encounter problems and features which have not been covered in this book; in these
cases, we suggest searching for answers at the following locations:

http://maven.apache.org
This will be the first place to look. The Maven web site contains a wealth of information and

http://maven.apache.org

Maven by Example 16 / 155

documentation. Every plugin has a few pages of documentation and there is a series of "quick
start" documents which will be helpful in addition to the content of this book. While the Maven site
contains a wealth of information, it can also be frustrating, confusing, and overwhelming. There
is a custom Google search box on the main Maven page that will search known Maven sites for
information. This provides better results than a generic Google search.

Maven User Mailing List
The Maven User mailing list is the place for users to ask questions. Before you ask a question on
the user mailing list, you will want to search for any previous discussion that might relate to your
question. It is bad form to ask a question that has already been asked without first checking to
see if an answer already exists in the archives. There are a number of useful mailing list archive
browsers; we’ve found Nabble to the be the most useful. You can browse the User mailing list
archives at http://mail-archives.apache.org/mod_mbox/maven-users/. You can join the user mailing
list by following the instructions available at http://maven.apache.org/mail-lists.html.

http://books.sonatype.com
Sonatype maintains an online copy of this book and other tutorials related to Apache Maven.

2.8 About the Apache Software License

Apache Maven is released under the Apache Software License, Version 2.0. If you want to read this
license, you can read ${M2_HOME}/LICENSE.txt or read this license on the Open Source Initiative’s
web site at http://www.opensource.org/licenses/apache2.0.php.

There’s a good chance that, if you are reading this book, you are not a lawyer. If you are wondering
what the Apache License, Version 2.0 means, the Apache Software Foundation has assembled a very
helpful Frequently Asked Questions (FAQ) page about the license available at http://www.apache.org/-
foundation/licence-FAQ.html.

http://mail-archives.apache.org/mod_mbox/maven-users/
http://maven.apache.org/mail-lists.html
http://books.sonatype.com
http://www.opensource.org/licenses/apache2.0.php
http://www.apache.org/foundation/licence-FAQ.html
http://www.apache.org/foundation/licence-FAQ.html

Maven by Example 17 / 155

Chapter 3

A Simple Maven Project

3.1 Introduction

In this chapter, we introduce a simple project created from scratch using the Maven Archetype plugin.
This elementary application provides us with the opportunity to discuss some core Maven concepts while
you follow along with the development of the project.

Before you can start using Maven for complex, multi-module builds, we have to start with the basics.
If you’ve used Maven before, you’ll notice that it does a good job of taking care of the details. Your
builds tend to “just work,” and you only really need to dive into the details of Maven when you want to
customize the default behavior or write a custom plugin. However, when you do need to dive into the
details, a thorough understanding of the core concepts is essential. This chapter aims to introduce you to
the simplest possible Maven project and then presents some of the core concepts that make Maven a solid
build platform. After reading it, you’ll have a fundamental understanding of the build lifecycle, Maven
repositories, dependency management, and the Project Object Model (POM).

3.1.1 Downloading this Chapter’s Example

This chapter develops a very simple example which will be used to explore core concepts of Maven. If
you follow the steps described in this chapter, you shouldn’t need to download the examples to recreate
the code produced by the Maven. We will be using the Maven Archetype plugin to create this simple

Maven by Example 18 / 155

project and this chapter doesn’t modify the project in any way. If you would prefer to read this chapter
with the final example source code, this chapter’s example project may be downloaded with the book’s
example code at:

http://books.sonatype.com/mvnex-book/mvnex-examples.zip

Unzip this archive in any directory, and then go to the ch-simple/ directory. There you will see a
directory named simple that contains the source code for this chapter.

3.2 Creating a Simple Project

To start a new Maven project, use the Maven Archetype plugin from the command line. Run the arc
hetype:generate goal, select default archetype suggested by pressing "Enter". This will use the
archetype org.apache.maven.archetypes:maven-archetype-quickstart. Press "En-
ter" again to confirm the latest version of the archetype and then "Enter" to confirm the supplied parame-
ters.

Warning
At the time of publication, the default maven-archetype-quickstart was item #312
in a list of 860 available archetypes. As more and more projects release Maven archetypes,
this list will change and the number for the default archetype may change. When you run
archetype:generate as shown below, the default maven-archetype-quickstart
will be selected by default.

$ mvn archetype:generate -DgroupId=org.sonatype.mavenbook \
-DartifactId=simple \
-Dpackage=org.sonatype.mavenbook \
-Dversion=1.0-SNAPSHOT
[INFO]
[INFO] ---
[INFO] Building Maven Stub Project (No POM) 1
[INFO] ---
[INFO]
[INFO] >>> maven-archetype-plugin:2.2:generate (default-cli) @ standalone- ←↩

pom >>>
[INFO]
[INFO] <<< maven-archetype-plugin:2.2:generate (default-cli) @ standalone- ←↩

pom <<<
[INFO]

Maven by Example 19 / 155

[INFO] --- maven-archetype-plugin:2.2:generate (default-cli) @ standalone- ←↩
pom ---

[INFO] Generating project in Interactive mode
[INFO] No archetype defined. Using maven-archetype-quickstart (org.apache. ←↩

maven.archetypes:maven-archetype-quickstart:1.0)
Choose archetype:
...
312: remote -> org.apache.maven.archetypes:maven-archetype-quickstart (An ←↩

archetype which contains a sample Maven project.)
Choose a number or apply filter (format: [groupId:]artifactId, case ←↩

sensitive contains): 312:
Choose org.apache.maven.archetypes:maven-archetype-quickstart version:
1: 1.0-alpha-1
2: 1.0-alpha-2
3: 1.0-alpha-3
4: 1.0-alpha-4
5: 1.0
6: 1.1
Choose a number: 6:
[INFO] Using property: groupId = org.sonatype.mavenbook
[INFO] Using property: artifactId = simple
[INFO] Using property: version = 1.0-SNAPSHOT
[INFO] Using property: package = org.sonatype.mavenbook
Confirm properties configuration:
groupId: org.sonatype.mavenbook
artifactId: simple
version: 1.0-SNAPSHOT
package: org.sonatype.mavenbook
Y: :

[INFO] ---
[INFO] Using following parameters for creating project from Old (1.x) ←↩

Archetype: maven-archetype-quickstart:1.1
[INFO] ---
[INFO] Parameter: groupId, Value: org.sonatype.mavenbook
[INFO] Parameter: packageName, Value: org.sonatype.mavenbook
[INFO] Parameter: package, Value: org.sonatype.mavenbook
[INFO] Parameter: artifactId, Value: simple
[INFO] Parameter: basedir, Value: /Volumes/mac-data/dev/github/sonatype
[INFO] Parameter: version, Value: 1.0-SNAPSHOT
[INFO] project created from Old (1.x) Archetype in dir: /Volumes/mac-data/ ←↩

dev/github/sonatype/simple
[INFO] BUILD SUCCESS
...

mvn is the Maven command. archetype:generate is called a Maven goal. An archetype is defined
as “an original model or type after which other similar things are patterned; a prototype.” A number of
archetypes are available in Maven for anything from a simple application to a complex web application,

Maven by Example 20 / 155

and the archetype:generate offers a list of archetypes to choose from. In this chapter, we are
going to use the most basic archetype to create a simple skeleton starter project. The plugin is the prefix
archetype, and the goal is generate.

Once we’ve generated a project, take a look at the directory structure Maven created under the simple
directory:

simple/ v1
simple/pom.xml v2
/src/
/src/main/ v3
/main/java
/src/test/ v4
/test/java

This generated directory adheres to the Maven Standard Directory Layout. We’ll get into more details
later in this chapter, but for now, let’s just try to understand these few basic directories:

v1 The Maven Archetype plugin creates a directory simple that matches the artifactId. This
is known as the project’s base directory.v2 Every Maven project has what is known as a Project Object Model (POM) in a file named pom.
xml. This file describes the project, configures plugins, and declares dependencies.v3 Our project’s source code and resources are placed under src/main. In the case of our simple
Java project this will consist of a few Java classes and some properties file. In another project, this
could be the document root of a web application or configuration files for an application server. In
a Java project, Java classes are placed in src/main/java and classpath resources are placed in
src/main/resources.v4 Our project’s test cases are located in src/test. Under this directory, Java classes such as JUnit
or TestNG tests are placed in src/test/java, and classpath resources for tests are located in
src/test/resources.

The Maven Archetype plugin generated a single class org.sonatype.mavenbook.App, which is a
13-line Java class with a static main function that prints out a message:

package org.sonatype.mavenbook;

/**
* Hello world!

*
*/

public class App

Maven by Example 21 / 155

{
public static void main(String[] args)
{

System.out.println("Hello World!");
}

}

The simplest Maven archetype generates the simplest possible program: a program which prints "Hello
World!" to standard output.

3.3 Building a Simple Project

The created directory simple contains the pom.xml and you can easily build the project:

$ cd simple
$ mvn install
[INFO] Scanning for projects...
[INFO] ---
[INFO] Building simple
[INFO]task-segment: [install]
[INFO] ---
[INFO] [resources:resources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:compile]
[INFO] Compiling 1 source file to /simple/target/classes
[INFO] [resources:testResources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:testCompile]
[INFO] Compiling 1 source file to /simple/target/test-classes
[INFO] [surefire:test]
[INFO] Surefire report directory: /simple/target/surefire-reports

T E S T S

Running org.sonatype.mavenbook.AppTest
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.105 sec

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

[INFO] [jar:jar]

Maven by Example 22 / 155

[INFO] Building jar: /simple/target/simple-1.0-SNAPSHOT.jar
[INFO] [install:install]
[INFO] Installing /simple/target/simple-1.0-SNAPSHOT.jar to \
~/.m2/repository/com/sonatype/maven/simple/simple/1.0-SNAPSHOT/ \
simple-1.0-SNAPSHOT.jar

You’ve just created, compiled, tested, packaged, and installed the simplest possible Maven project. To
prove to yourself that this program works, run it from the command line.

$ java -cp target/simple-1.0-SNAPSHOT.jar org.sonatype.mavenbook.App
Hello World!

3.4 Simple Project Object Model

Simple Project’s pom.xml file

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.sonatype.mavenbook.simple</groupId>
<artifactId>simple</artifactId>
<packaging>jar</packaging>
<version>1.0-SNAPSHOT</version>
<name>simple</name>
<url>http://maven.apache.org</url>
<dependencies>

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>
</dependencies>

</project>

This pom.xml file is the most basic POM you will ever deal with for a Maven project, usually a POM
file is considerably more complex: defining multiple dependencies and customizing plugin behavior. The
first few elements—groupId, artifactId, packaging, version—are what is known as the Maven coordinates
which uniquely identify a project. name and url are descriptive elements of the POM providing a human

Maven by Example 23 / 155

readable name and associating the project with a web site. The dependencies element defines a single,
test-scoped dependency on a unit testing framework called JUnit. These topics will be further introduced
in Section 3.5, all you need to know, at this point, is that the pom.xml is the file that makes Maven go.

Maven always executes against an effective POM, a combination of settings from this project’s pom.
xml, all parent POMs, a super-POM defined within Maven, user-defined settings, and active profiles. All
projects ultimately extend the super-POM, which defines a set of sensible default configuration settings.
While your project might have a relatively minimal pom.xml, the contents of your project’s POM are
interpolated with the contents of all parent POMs, user settings, and any active profiles. To see this
"effective" POM, run the following command in the simple project’s base directory.

$ mvn help:effective-pom

When you run this, you should see a much larger POM which exposes the default settings of Maven. This
goal can come in handy if you are trying to debug a build and want to see how all of the current project’s
ancestor POMs are contributing to the effective POM.

3.5 Core Concepts

Having just run Maven for the first time, it is a good time to introduce a few of the core concepts of Maven.
In the previous example, you generated a project which consisted of a POM and some code assembled
in the Maven standard directory layout. You then executed Maven with a lifecycle phase as an argument,
which prompted Maven to execute a series of Maven plugin goals. Lastly, you installed a Maven artifact
into your local repository. Wait? What is a "lifecycle"? What is a "local repository"? The following
section defines some of Maven’s central concepts.

3.5.1 Maven Plugins and Goals

To execute a single Maven plugin goal, we used the syntax mvn archetype:generate, where arc
hetype is the identifier of a plugin and generate is the identifier of a goal. When Maven executes a
plugin goal, it prints out the plugin identifier and goal identifier to standard output:

$ mvn archetype:generate -DgroupId=org.sonatype.mavenbook.simple
...
[INFO] [archetype:generate]
...

Maven by Example 24 / 155

A Maven Plugin is a collection of one or more goals. Examples of Maven plugins can be simple core
plugins like the Jar plugin, which contains goals for creating JAR files, Compiler plugin, which contains
goals for compiling source code and unit tests, or the Surefire plugin, which contains goals for executing
unit tests and generating reports. Other, more specialized Maven plugins include plugins like the Hiber-
nate3 plugin for integration with the popular persistence library Hibernate, the JRuby plugin which allows
you to execute ruby as part of a Maven build or to write Maven plugins in Ruby. Maven also provides for
the ability to define custom plugins. A custom plugin can be written in Java, or a plugin can be written in
any number of languages including Ant, Groovy, beanshell, and, as previously mentioned, Ruby.

Figure 3.1: A Plugin Contains Goals

A goal is a specific task that may be executed as a standalone goal or along with other goals as part
of a larger build. A goal is a “unit of work” in Maven. Examples of goals include the compile goal
in the Compiler plugin, which compiles all of the source code for a project, or the test goal of the
Surefire plugin, which can execute unit tests. Goals are configured via configuration properties that can
be used to customize behavior. For example, the compile goal of the Compiler plugin defines a set
of configuration parameters. When running the archetype:generate goal earlier in Section 3.2
we passed the package parameter to the generate goal as org.sonatype.mavenbook. If we
had omitted the package parameter, the package name would have defaulted to org.sonatype.
mavenbook.simple.

Note
When referring to a plugin goal, we frequently use the shorthand notation: pluginId:goalId. For example,
when referring to the generate goal in the Archetype plugin, we write archetype:generate.

Goals define parameters that can define sensible default values. In the archetype:generate exam-
ple, we did not specify what kind of archetype the goal was to create on our command line; we simply
passed in a groupId and an artifactId. Not passing in the type of artifact we wanted to create
caused the generate goal to prompt us for input, the generate goal stopped and asked us to choose an

Maven by Example 25 / 155

archetype from a list. If you had run the archetype:create goal instead, Maven would have as-
sumed that you wanted to generate a new project using the default maven-archetype-quickstart
archetype. This is our first brush with convention over configuration. The convention, or default, for the
create goal is to create a simple project called Quickstart. The create goal defines a configuration
property archetypeArtifactId that has a default value of maven-archetype-quickstart.
The Quickstart archetype generates a minimal project shell that contains a POM and a single class. The
Archetype plugin is far more powerful than this first example suggests, but it is a great way to get new
projects started fast. Later in this book, we’ll show you how the Archetype plugin can be used to generate
more complex projects such as web applications, and how you can use the Archetype plugin to define
your own set of projects.

The core of Maven has little to do with the specific tasks involved in your project’s build. By itself, Maven
doesn’t know how to compile your code or even how to make a JAR file. It delegates all of this work to
Maven plugins like the Compiler plugin and the Jar plugin, which are downloaded on an as-needed basis
and periodically updated from the central Maven repository. When you download Maven, you are getting
the core of Maven, which consists of a very basic shell that knows only how to parse the command line,
manage a classpath, parse a POM file, and download Maven plugins as needed. By keeping the Compiler
plugin separate from Maven’s core and providing for an update mechanism, Maven makes it easier for
users to have access to the latest options in the compiler. In this way, Maven plugins allow for universal
reusability of common build logic. You are not defining the compile task in a build file; you are using
a Compiler plugin that is shared by every user of Maven. If there is an improvement to the Compiler
plugin, every project that uses Maven can immediately benefit from this change. (And, if you don’t like
the Compiler plugin, you can override it with your own implementation.)

3.5.2 Maven Lifecycle

The second command we ran in the previous section included an execution of the Maven lifecycle. It
begins with a phase to validate the basic integrity of the project and ends with a phase that involves
deploying a project to production. Lifecycle phases are intentionally vague, defined solely as validation,
testing, or deployment, and they may mean different things to different projects. For example, in a project
that produces a Java archive, the package phase produces a JAR; in a project that produces a web
application, the package phase produces a WAR.

Plugin goals can be attached to a lifecycle phase. As Maven moves through the phases in a lifecycle, it
will execute the goals attached to each particular phase. Each phase may have zero or more goals bound
to it. In the previous section, when you ran mvn install, you might have noticed that more than one
goal was executed. Examine the output after running mvn install and take note of the various goals
that are executed. When this simple example reached the package phase, it executed the jar goal in
the Jar plugin. Since our simple Quickstart project has (by default) a jar packaging type, the jar:jar
goal is bound to the package phase.

Maven by Example 26 / 155

Figure 3.2: A Goal Binds to a Phase

We know that the package phase is going to create a JAR file for a project with jar packaging. But
what of the goals preceding it, such as compiler:compile and surefire:test? These goals are
executed as Maven steps in the phases preceding package in the Maven lifecycle.

resources:resources
plugin is bound to the process-resources phase. This goal copies all of the resources from
src/main/resources and any other configured resource directories to the output directory.

compiler:compile
is bound to the compile phase. This goal compiles all of the source code from src/main/
java or any other configured source directories to the output directory.

resources:testResources
plugin is bound to the process-test-resources phase. This goal copies all of the resources
from src/test/resources and any other configured test resource directories to a test output
directory.

compiler:testCompile
plugin is bound to the test-compile phase. This goal compiles test cases from src/test/
java and any other configured test source directories to a test output directory.

surefire:test
bound to the test phase. This goal executes all of the tests and creates output files that capture
detailed results. By default, this goal will terminate a build if there is a test failure.

jar:jar
to the package phase. This goal packages the output directory into a JAR file.

Maven by Example 27 / 155

Figure 3.3: Bound Goals are Run when Phases Execute

To summarize, when we executed mvn install, Maven executes all phases up to the install phase, and
in the process of stepping through the lifecycle phases it executes all goals bound to each phase. Instead

Maven by Example 28 / 155

of executing a Maven lifecycle goal you could achieve the same results by specifying a sequence of plugin
goals as follows:

mvn resources:resources \
compiler:compile \
resources:testResources \
compiler:testCompile \
surefire:test \
jar:jar \
install:install

It is much easier to execute lifecycle phases than it is to specify explicit goals on the command line, and
the common lifecycle allows every project that uses Maven to adhere to a well-defined set of standards.
The lifecycle is what allows a developer to jump from one Maven project to another without having to
know very much about the details of each particular project’s build. If you can build one Maven project,
you can build them all.

3.5.3 Maven Coordinates

The Archetype plugin created a project with a file named pom.xml. This is the Project Object Model
(POM), a declarative description of a project. When Maven executes a goal, each goal has access to the
information defined in a project’s POM. When the jar:jar goal needs to create a JAR file, it looks to
the POM to find out what the JAR file’s name is. When the compiler:compile goal compiles Java
source code into bytecode, it looks to the POM to see if there are any parameters for the compile goal.
Goals execute in the context of a POM. Goals are actions we wish to take upon a project, and a project
is defined by a POM. The POM names the project, provides a set of unique identifiers (coordinates) for a
project, and defines the relationships between this project and others through dependencies, parents, and
prerequisites. A POM can also customize plugin behavior and supply information about the community
and developers involved in a project.

Maven coordinates define a set of identifiers which can be used to uniquely identify a project, a depen-
dency, or a plugin in a Maven POM. Take a look at the following POM.

Maven by Example 29 / 155

Figure 3.4: A Maven Project’s Coordinates

We’ve highlighted the Maven coordinates for this project: the groupId, artifactId, version and
packaging. These combined identifiers make up a project’s coordinates. There is a fifth, seldom-used
coordinate named classifier which we will introduce later in the book. You can feel free to ignore
classifiers for now. Just like in any other coordinate system, a set of Maven coordinates is an address for a
specific point in "space". Maven pinpoints a project via its coordinates when one project relates to another,
either as a dependency, a plugin, or a parent project reference. Maven coordinates are often written using
a colon as a delimiter in the following format: groupId:artifactId:packaging:version. In
the above pom.xml file for our current project, its coordinates are represented as mavenbook:my-
app:jar:1.0-SNAPSHOT.

groupId
The group, company, team, organization, project, or other group. The convention for group iden-
tifiers is that they begin with the reverse domain name of the organization that creates the project.
Projects from Sonatype would have a groupId that begins with com.sonatype, and projects
in the Apache Software Foundation would have a groupId that starts with org.apache.

Maven by Example 30 / 155

artifactId
A unique identifier under groupId that represents a single project.

version
A specific release of a project. Projects that have been released have a fixed version identifier that
refers to a specific version of the project. Projects undergoing active development can use a special
identifier that marks a version as a SNAPSHOT.

The packaging format of a project is also an important component in the Maven coordinates, but it isn’t a
part of a project’s unique identifier. A project’s groupId:artifactId:version make that project
unique; you can’t have a project with the same three groupId, artifactId, and version identifiers.

packaging
The type of project, defaulting to jar, describing the packaged output produced by a project. A
project with packaging jar produces a JAR archive; a project with packaging war produces a web
application.

These four elements become the key to locating and using one particular project in the vast space of other
“Mavenized” projects . Maven repositories (public, private, and local) are organized according to these
identifiers. When this project is installed into the local Maven repository, it immediately becomes locally
available to any other project that wishes to use it. All you must do is add it as a dependency of another
project using the unique Maven coordinates for a specific artifact.

Maven by Example 31 / 155

Figure 3.5: Maven Space is a Coordinate System of Projects

3.5.4 Maven Repositories

When you run Maven for the first time, you will notice that Maven downloads a number of files from a
remote Maven repository. If the simple project was the first time you ran Maven, the first thing it will do is
download the latest release of the Resources plugin when it triggers the resources:resource goal.
In Maven, artifacts and plugins are retrieved from a remote repository when they are needed. One of the
reasons the initial Maven download is so small (1.5 MiB) is due to the fact that Maven doesn’t ship with
much in the way of plugins. Maven ships with the bare minimum and fetches from a remote repository
when it needs to. Maven ships with a default remote repository location (http://repo1.maven.org/maven2)
which it uses to download the core Maven plugins and dependencies.

Often you will be writing a project which depends on libraries that are neither free nor publicly dis-
tributed. In this case you will need to either setup a custom repository inside your organization’s network
or download and install the dependencies manually. The default remote repositories can be replaced or
augmented with references to custom Maven repositories maintained by your organization. There are
multiple products available to allow organizations to manage and maintain mirrors of the public Maven
repositories.

http://repo1.maven.org/maven2

Maven by Example 32 / 155

What makes a Maven repository a Maven repository? A repository is a collection of project artifacts stored
in a directory structure that closely matches a project’s Maven coordinates. You can see this structure by
opening up a web browser and browsing the central Maven repository at http://repo1.maven.org/maven2/.
You will see that an artifact with the coordinates org.apache.commons:commons-email:1.1
is available under the directory /org/apache/commons/commons-email/1.1/ in a file named
commons-email-1.1.jar. The standard for a Maven repository is to store an artifact in the follow-
ing directory relative to the root of the repository:

/<groupId>/<artifactId>/<version>/<artifactId>-<version>.<packaging>

Maven downloads artifacts and plugins from a remote repository to your local machine and stores these
artifacts in your local Maven repository. Once Maven has downloaded an artifact from the remote Maven
repository it never needs to download that artifact again as Maven will always look for the artifact in
the local repository before looking elsewhere. On Windows XP, your local repository is likely in C:\
Documents and Settings\USERNAME\.m2\repository, and on Windows Vista, your local
repository is in C:\Users\USERNAME\.m2\repository. On Unix systems, your local Maven
repository is available in ~/.m2/repository. When you build a project like the simple project you
created in the previous section, the install phase executes a goal which installs your project’s artifacts
in your local Maven repository.

In your local repository, you should be able to see the artifact created by our simple project. If you run
the mvn install command, Maven will install our project’s artifact in your local repository. Try it.

$ mvn install
...
[INFO] [install:install]
[INFO] Installing .../simple-1.0-SNAPSHOT.jar to \
~/.m2/repository/com/sonatype/maven/simple/1.0-SNAPSHOT/ \
simple-1.0-SNAPSHOT.jar
...

As you can see from the output of this command, Maven installed our project’s JAR file into our local
Maven repository. Maven uses the local repository to share dependencies across local projects. If you
develop two projects—project A and project B—with project B depending on the artifact produced by
project A, Maven will retrieve project A’s artifact from your local repository when it is building project
B. Maven repositories are both a local cache of artifacts downloaded from a remote repository and a
mechanism for allowing your projects to depend on each other.

http://repo1.maven.org/maven2/

Maven by Example 33 / 155

3.5.5 Maven’s Dependency Management

In this chapter’s simple example, Maven resolved the coordinates of the JUnit dependency junit:
junit:3.8.1 to a path in a Maven repository /junit/junit/3.8.1/junit-3.8.1.jar. The
ability to locate an artifact in a repository based on Maven coordinates gives us the ability to define de-
pendencies in a project’s POM. If you examine the simple project’s pom.xml file, you will see that there
is a section which deals with dependencies, and that this section contains a single dependency—JUnit.

A more complex project would contain more than one dependency, or it might contain dependencies that
depend on other artifacts. Support for transitive dependencies is one of Maven’s most powerful features.
Let’s say your project depends on a library that, in turn, depends on 5 or 10 other libraries (Spring or
Hibernate, for example). Instead of having to track down all of these dependencies and list them in your
pom.xml explicitly, you can simply depend on the library you are interested in and Maven will add
the dependencies of this library to your project’s dependencies implicitly. Maven will also take care of
working out conflicts between dependencies, and provides you with the ability to customize the default
behavior and exclude certain transitive dependencies.

Let’s take a look at a dependency which was downloaded to your local repository when you ran the
previous example. Look in your local repository path under ~/.m2/repository/junit/junit/
3.8.1/. If you have been following this chapter’s examples, there will be a file named junit-3.8.
1.jar and a junit-3.8.1.pom file in addition to a few checksum files which Maven uses to verify
the authenticity of a downloaded artifact. Note that Maven doesn’t just download the JUnit JAR file,
Maven also downloads a POM file for the JUnit dependency. The fact that Maven downloads POM files
in addition to artifacts is central to Maven’s support for transitive dependencies.

When you install your project’s artifact in the local repository, you will also notice that Maven publishes
a slightly modified version of the project’s pom.xml file in the same directory as the JAR file. Storing
a POM file in the repository gives other projects information about this project, most importantly what
dependencies it has. If Project B depends on Project A, it also depends on Project A’s dependencies.
When Maven resolves a dependency artifact from a set of Maven coordinates, it also retrieves the POM
and consults the dependencies POM to find any transitive dependencies. These transitive dependencies
are then added as dependencies of the current project.

A dependency in Maven isn’t just a JAR file; it’s a POM file that, in turn, may declare dependencies
on other artifacts. These dependencies of dependencies are called transitive dependencies, and they are
made possible by the fact that the Maven repository stores more than just bytecode; it stores metadata
about artifacts.

Maven by Example 34 / 155

Figure 3.6: Maven Resolves Transitive Dependencies

In the previous figure, project A depends on projects B and C. Project B depends on project D, and project
C depends on project E. The full set of direct and transitive dependencies for project A would be projects
B, C, D, and E, but all project A had to do was define a dependency on B and C. Transitive dependencies
can come in handy when your project relies on other projects with several small dependencies (like Hi-
bernate, Apache Struts, or the Spring Framework). Maven also provides you with the ability to exclude
transitive dependencies from being included in a project’s classpath.

Maven also provides for different dependency scopes. The simple project’s pom.xml contains a single
dependency —junit:junit:jar:3.8.1 — with a scope of test. When a dependency has a scope
of test, it will not be available to the compile goal of the Compiler plugin. It will be added to the
classpath for only the compiler:testCompile and surefire:test goals.

When you create a JAR for a project, dependencies are not bundled with the generated artifact; they
are used only for compilation. When you use Maven to create a WAR or an EAR file, you can configure
Maven to bundle dependencies with the generated artifact, and you can also configure it to exclude certain
dependencies from the WAR file using the provided scope. The provided scope tells Maven that a
dependency is needed for compilation, but should not be bundled with the output of a build. This scope
comes in handy when you are developing a web application. You’ll need to compile your code against the
Servlet specification, but you don’t want to include the Servlet API JAR in your web application’s WEB-
INF/lib directory.

Maven by Example 35 / 155

3.5.6 Site Generation and Reporting

Another important feature of Maven is its ability to generate documentation and reports. In your simple
project’s directory, execute the following command:

$ mvn site

This will execute the site lifecycle phase. Unlike the default build lifecycle that manages generation
of code, manipulation of resources, compilation, packaging, etc., this lifecycle is concerned solely with
processing site content under the src/site directories and generating reports. After this command
executes, you should see a project web site in the target/site directory. Load target/site/
index.html and you should see a basic shell of a project site. This shell contains some reports under
“Project Reports” in the lefthand navigation menu, and it also contains information about the project,
the dependencies, and developers associated with it under “Project Information.” The simple project’s
web site is mostly empty, since the POM contains very little information about itself beyond its Maven
coordinates, a name, a URL, and a single test dependency.

On this site, you’ll notice that some default reports are available. A unit test report communicates the
success and failure of all unit tests in the project. Another report generates Javadoc for the project’s API.
Maven provides a full range of configurable reports, such as the Clover report that examines unit test cov-
erage, the JXR report that generates cross-referenced HTML source code listings useful for code reviews,
the PMD report that analyzes source code for various coding problems, and the JDepend report that an-
alyzes the dependencies between packages in a codebase. You can customize site reports by configuring
which reports are included in a build via the pom.xml file.

3.6 Summary

In this chapter, we have created a simple project, packaged the project into a JAR file, installed that
JAR into the Maven repository for use by other projects, and generated a site with documentation. We
accomplished this without writing a single line of code or touching a single configuration file. We also
took some time to develop definitions for some of the core concepts of Maven. In the next chapter, we’ll
start customizing and modifying our project pom.xml file to add dependencies and configure unit tests.

Maven by Example 36 / 155

Chapter 4

Customizing a Maven Project

4.1 Introduction

This chapter expands on the information introduced in Chapter 3. We’re going to create a simple project
generated with the Maven Archetype plugin, add some dependencies, add some source code, and cus-
tomize the project to suit our needs. By the end of this chapter, you will know how to start using Maven
to create real projects.

4.1.1 Downloading this Chapter’s Example

We’ll be developing a useful program that interacts with a Yahoo Weather web service. Although you
should be able to follow along with this chapter without the example source code, we recommend that
you download a copy of the code to use as a reference. This chapter’s example project may be downloaded
with the book’s example code at:

http://books.sonatype.com/mvnex-book/mvnex-examples.zip

Unzip this archive in any directory, and then go to the ch-custom/ directory. There you will see a
directory named simple-weather/, which contains the Maven project developed in this chapter.

Maven by Example 37 / 155

4.2 Defining the Simple Weather Project

Before we start customizing this project, let’s take a step back and talk about the Simple Weather project.
What is it? It’s a contrived example, created to demonstrate some of the features of Maven. It is an
application that is representative of the kind you might need to build. The Simple Weather application
is a basic command-line-driven application that takes a zip code and retrieves some data from the Yahoo
Weather RSS feed. It then parses the result and prints the result to standard output.

We chose this example for a number of reasons. First, it is straightforward. A user supplies input via
the command line, the app takes that zip code, makes a request to Yahoo Weather, parses the result, and
formats some simple data to the screen. This example is a simple main() function and some supporting
classes; there is no enterprise framework to introduce and explain, just XML parsing and some logging
statements. Second, it gives us a good excuse to introduce some interesting libraries such as Velocity,
Dom4J, and Log4J. Although this book is focused on Maven, we won’t shy away from an opportunity to
introduce interesting utilities. Lastly, it is an example that can be introduced, developed, and deployed in
a single chapter.

4.2.1 Yahoo Weather RSS

Before you build this application, you should know something about the Yahoo Weather RSS feed. To
start with, the service is made available under the following terms:

The feeds are provided free of charge for use by individuals and
nonprofit organizations for personal, noncommercial uses. We ask that
you provide attribution to Yahoo Weather in connection with your use
of the feeds.

In other words, if you are thinking of integrating these feeds into your commercial web site, think
again—this feed is for personal, noncommercial use. The use we’re encouraging in this chapter is per-
sonal educational use. For more information about these terms of service, see the Yahoo Weather! API
documentation here: http://developer.yahoo.com/weather/.

4.3 Creating the Simple Weather Project

First, let’s use the Maven Archetype plugin to create a basic skeleton for the Simple Weather project.
Execute the following command to create a new project, press enter to use the default maven-archet

http://developer.yahoo.com/weather/

Maven by Example 38 / 155

ype-quickstart and the latest version of the archetype, and then enter "Y" to confirm and generate
the new project. Note that the number for the archetype will be different on your execution:

$ mvn archetype:generate -DgroupId=org.sonatype.mavenbook.custom \
-DartifactId=simple-weather \
-Dversion=1.0

[INFO] Preparing archetype:generate
...
[INFO] [archetype:generate {execution: default-cli}]
[INFO] Generating project in Interactive mode
[INFO] No archetype defined. Using maven-archetype-quickstart \
(org.apache.maven.archetypes:maven-archetype-quickstart:1.0)
Choose archetype:
...
16: internal -> maven-archetype-quickstart ()
...
Choose a number: (...) 16: : 16
Confirm properties configuration:
groupId: org.sonatype.mavenbook.custom
artifactId: simple-weather
version: 1.0
package: org.sonatype.mavenbook.custom
Y: : Y
[INFO] Parameter: groupId, Value: org.sonatype.mavenbook.custom
[INFO] Parameter: packageName, Value: org.sonatype.mavenbook.custom
[INFO] Parameter: package, Value: org.sonatype.mavenbook.custom
[INFO] Parameter: artifactId, Value: simple-weather
[INFO] Parameter: basedir, Value: /private/tmp
[INFO] Parameter: version, Value: 1.0
[INFO] BUILD SUCCESSFUL

Once the Maven Archetype plugin creates the project, go into the simple-weather directory and take
a look at the pom.xml file. You should see the XML document that’s shown in Initial POM for the
simple-weather Project.

Initial POM for the simple-weather Project
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.sonatype.mavenbook.custom</groupId>
<artifactId>simple-weather</artifactId>
<packaging>jar</packaging>
<version>1.0</version>
<name>simple-weather</name>

Maven by Example 39 / 155

<url>http://maven.apache.org</url>
<dependencies>

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>
</dependencies>

</project>

Next, you will need to configure the Maven Compiler plugin to target Java 5. To do this, add the build
element to the initial POM as shown in POM for the simple-weather Project with Compiler Configuration.

POM for the simple-weather Project with Compiler Configuration

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.sonatype.mavenbook.custom</groupId>
<artifactId>simple-weather</artifactId>
<packaging>jar</packaging>
<version>1.0</version>
<name>simple-weather</name>
<url>http://maven.apache.org</url>
<dependencies>

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
<scope>test</scope>

</dependency>
</dependencies>
<build>

<plugins>
<plugin>

<artifactId>maven-compiler-plugin</artifactId>
<version>3.3</version>
<configuration>

<source>1.5</source>
<target>1.5</target>

</configuration>
</plugin>

</plugins>
</build>

Maven by Example 40 / 155

</project>

Notice that we passed in the version parameter to the archetype:generate goal. This overrides
the default value of 1.0-SNAPSHOT. In this project, we’re developing the 1.0 version of the simple-
weather project as you can see in the pom.xml version element.

4.4 Customize Project Information

Before we start writing code, let’s customize the project information a bit. We want to add some informa-
tion about the project’s license, the organization, and a few of the developers associated with the project.
This is all standard information you would expect to see in most projects. Adding Organizational, Legal,
and Developer Information to the pom.xml shows the XML that supplies the organizational information,
the licensing information, and the developer information.

Adding Organizational, Legal, and Developer Information to the pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
...

<name>simple-weather</name>
<url>http://www.sonatype.com</url>

<licenses>
<license>

<name>Apache 2</name>
<url>http://www.apache.org/licenses/LICENSE-2.0.txt</url>
<distribution>repo</distribution>
<comments>A business-friendly OSS license</comments>

</license>
</licenses>

<organization>
<name>Sonatype</name>
<url>http://www.sonatype.com</url>

</organization>

<developers>
<developer>

<id>jason</id>

Maven by Example 41 / 155

<name>Jason Van Zyl</name>
<email>jason@maven.org</email>
<url>http://www.sonatype.com</url>
<organization>Sonatype</organization>
<organizationUrl>http://www.sonatype.com</organizationUrl>
<roles>

<role>developer</role>
</roles>
<timezone>-6</timezone>

</developer>
</developers>
...

</project>

The ellipses in Adding Organizational, Legal, and Developer Information to the pom.xml are shorthand
for an abbreviated listing. When you see a pom.xml with “. . . ” and “. . . ” directly after the project
element’s start tag and directly before the project element’s end tag, this implies that we are not
showing the entire pom.xml file. In this case the licenses, organization, and developers
elements were all added before the dependencies element.

4.5 Add New Dependencies

The Simple Weather application is going to have to complete the following three tasks: retrieve XML data
from Yahoo Weather, parse the XML from Yahoo, and then print formatted output to standard output. To
accomplish these tasks, we have to introduce some new dependencies to our project’s pom.xml. To
parse the XML response from Yahoo, we’re going to be using Dom4J and Jaxen, to format the output of
this command-line program we are going to be using Velocity, and we will also need to add a dependency
for Log4J which we will be using for logging. After we add these dependencies, our dependencies
element will look like the following example.

Adding Dom4J, Jaxen, Velocity, and Log4J as Dependencies

<project>
[...]
<dependencies>

<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.14</version>

</dependency>
<dependency>

<groupId>dom4j</groupId>

Maven by Example 42 / 155

<artifactId>dom4j</artifactId>
<version>1.6.1</version>

</dependency>
<dependency>

<groupId>jaxen</groupId>
<artifactId>jaxen</artifactId>
<version>1.1.1</version>

</dependency>
<dependency>

<groupId>velocity</groupId>
<artifactId>velocity</artifactId>
<version>1.5</version>

</dependency>
<dependency>

<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>
</dependencies>
[...]

</project>

As you can see above, we’ve added four more dependency elements in addition to the existing element
which was referencing the test scoped dependency on JUnit. If you add these dependencies to the
project’s pom.xml file and then run mvn install, you will see Maven downloading all of these
dependencies and other transitive dependencies to your local Maven repository.

How did we find these dependencies? Did we just “know” the appropriate groupId and artifactId
values? Some of the dependencies are so widely used (like Log4J) that you’ll just remember what the
groupId and artifactId are every time you need to use them. Velocity, Dom4J, and Jaxen were
all located using the searching capability on http://repository.sonatype.org. This is a public Sonatype
Nexus instance which provides a search interface to various public Maven repositories, you can use it to
search for dependencies. To test this for yourself, load http://repository.sonatype.org and search for some
commonly used libraries such as Hibernate or the Spring Framework. When you search for an artifact on
this site, it will show you an artifactId and all of the versions known to the central Maven repository.
Clicking on the details for a specific version will load a page that contains the dependency element you’ll
need to copy and paste into your own project’s pom.xml. If you need to find a dependency, you’ll
want to check out repository.sonatype.org, as you’ll often find that certain libraries have more than one
groupId. With this tool, you can make sense of the Maven repository.

http://repository.sonatype.org
http://repository.sonatype.org
http://repository.sonatype.org

Maven by Example 43 / 155

4.6 Simple Weather Source Code

The Simple Weather command-line application consists of five Java classes.

org.sonatype.mavenbook.weather.Main
The Main class contains a static main() method: the entry point for this system.

org.sonatype.mavenbook.weather.Weather
The Weather class is a straightforward Java bean that holds the location of our weather report and
some key facts, such as the temperature and humidity.

org.sonatype.mavenbook.weather.YahooRetriever
The YahooRetriever class connects to Yahoo Weather and returns an InputStream of the
data from the feed.

org.sonatype.mavenbook.weather.YahooParser
The YahooParser class parses the XML from Yahoo Weather and returns a Weather object.

org.sonatype.mavenbook.weather.WeatherFormatter
The WeatherFormatter class takes a Weather object, creates a VelocityContext, and
evaluates a Velocity template.

Although we won’t dwell on the code here, we will provide all the necessary code for you to get the
example working. We assume that most readers have downloaded the examples that accompany this
book, but we’re also mindful of those who may wish to follow the example in this chapter step-by-step.
The sections that follow list classes in the simple-weather project. Each of these classes should be
placed in the same package: org.sonatype.mavenbook.weather.

Let’s remove the App and the AppTest classes created by archetype:generate and add our new
package. In a Maven project, all of a project’s source code is stored in src/main/java. From the base
directory of the new project, execute the following commands:

$ cd src/test/java/org/sonatype/mavenbook/custom
$ rm AppTest.java
$ cd ../../../../../../..
$ cd src/main/java/org/sonatype/mavenbook/custom
$ cd ..
$ rm App.java
$ mkdir weather
$ cd weather

Maven by Example 44 / 155

This creates a new package named org.sonatype.mavenbook.weather. Now we need to put
some classes in this directory. Using your favorite text editor, create a new file named Weather.java
with the contents shown in Simple Weather’s Weather Model Object.

Simple Weather’s Weather Model Object
package org.sonatype.mavenbook.weather;

public class Weather {
private String city;
private String region;
private String country;
private String condition;
private String temp;
private String chill;
private String humidity;

public Weather() {}

public String getCity() { return city; }
public void setCity(String city) {

this.city = city;
}

public String getRegion() { return region; }
public void setRegion(String region) {

this.region = region;
}

public String getCountry() { return country; }
public void setCountry(String country) {

this.country = country;
}

public String getCondition() { return condition; }
public void setCondition(String condition) {

this.condition = condition;
}

public String getTemp() { return temp; }
public void setTemp(String temp) {

this.temp = temp;
}

public String getChill() { return chill; }
public void setChill(String chill) {

this.chill = chill;
}

Maven by Example 45 / 155

public String getHumidity() { return humidity; }
public void setHumidity(String humidity) {

this.humidity = humidity;
}

}

The Weather class defines a simple bean that is used to hold the weather information parsed from the
Yahoo Weather feed. This feed provides a wealth of information, from the sunrise and sunset times to the
speed and direction of the wind. To keep this example as simple as possible, the Weather model object
keeps track of only the temperature, chill, humidity, and a textual description of current conditions.

Now, in the same directory, create a file named Main.java. This Main class will hold the static
main() method—the entry point for this example.

Simple Weather’s Main Class

package org.sonatype.mavenbook.weather;

import java.io.InputStream;

import org.apache.log4j.PropertyConfigurator;

public class Main {

public static void main(String[] args) throws Exception {
// Configure Log4J
PropertyConfigurator

.configure(Main.class.getClassLoader()
.getResource("log4j.properties"));

// Read the zip code from the command line
// (if none supplied, use 60202)
String zipcode = "60202";
try {

zipcode = args[0];
} catch(Exception e) {}

// Start the program
new Main(zipcode).start();

}

private String zip;

public Main(String zip) {
this.zip = zip;

Maven by Example 46 / 155

}

public void start() throws Exception {
// Retrieve Data
InputStream dataIn = new YahooRetriever().retrieve(zip);

// Parse Data
Weather weather = new YahooParser().parse(dataIn);

// Format (Print) Data
System.out.print(new WeatherFormatter().format(weather));

}
}

The main() method shown above configures Log4J by retrieving a resource from the classpath. It then
tries to read a zip code from the command line. If an exception is thrown while it is trying to read the zip
code, the program will default to a zip code of 60202. Once it has a zip code, it instantiates an instance
of Main and calls the start() method on an instance of Main. The start() method calls out to the
YahooRetriever to retrieve the weather XML. The YahooRetriever returns an InputStream
which is then passed to the YahooParser. The YahooParser parses the Yahoo Weather XML and
returns a Weather object. Finally, the WeatherFormatter takes a Weather object and spits out a
formatted String which is printed to standard output.

Create a file named YahooRetriever.java in the same directory with the contents shown in Simple
Weather’s YahooRetriever Class.

Simple Weather’s YahooRetriever Class

package org.sonatype.mavenbook.weather;

import java.io.InputStream;
import java.net.URL;
import java.net.URLConnection;

import org.apache.log4j.Logger;

public class YahooRetriever {

private static Logger log = Logger.getLogger(YahooRetriever.class);

public InputStream retrieve(String zipcode) throws Exception {
log.info("Retrieving Weather Data");
String url = "http://weather.yahooapis.com/forecastrss?p="

+ zipcode;
URLConnection conn = new URL(url).openConnection();
return conn.getInputStream();

Maven by Example 47 / 155

}
}

This simple class opens a URLConnection to the Yahoo Weather API and returns an InputStream.
To create something to parse this feed, we’ll need to create the YahooParser.java file in the same
directory.

Simple Weather’s YahooParser Class

package org.sonatype.mavenbook.weather;

import java.io.InputStream;
import java.util.HashMap;
import java.util.Map;

import org.apache.log4j.Logger;
import org.dom4j.Document;
import org.dom4j.DocumentFactory;
import org.dom4j.io.SAXReader;

public class YahooParser {

private static Logger log = Logger.getLogger(YahooParser.class);

public Weather parse(InputStream inputStream) throws Exception {
Weather weather = new Weather();

log.info("Creating XML Reader");
SAXReader xmlReader = createXmlReader();
Document doc = xmlReader.read(inputStream);

log.info("Parsing XML Response");
weather.setCity(
doc.valueOf("/rss/channel/y:location/@city"));

weather.setRegion(
doc.valueOf("/rss/channel/y:location/@region"));

weather.setCountry(
doc.valueOf("/rss/channel/y:location/@country"));

weather.setCondition(
doc.valueOf("/rss/channel/item/y:condition/@text"));

weather.setTemp(
doc.valueOf("/rss/channel/item/y:condition/@temp"));

weather.setChill(
doc.valueOf("/rss/channel/y:wind/@chill"));

weather.setHumidity(
doc.valueOf("/rss/channel/y:atmosphere/@humidity"));

Maven by Example 48 / 155

return weather;
}

private SAXReader createXmlReader() {
Map<String,String> uris = new HashMap<String,String>();
uris.put("y", "http://xml.weather.yahoo.com/ns/rss/1.0");

DocumentFactory factory = new DocumentFactory();
factory.setXPathNamespaceURIs(uris);

SAXReader xmlReader = new SAXReader();
xmlReader.setDocumentFactory(factory);

return xmlReader;
}

}

The YahooParser is the most complex class in this example. We’re not going to dive into the details
of Dom4J or Jaxen here, but the class deserves some explanation. YahooParser’s parse() method
takes an InputStream and returns a Weather object. To do this, it needs to parse an XML document
with Dom4J. Since we’re interested in elements under the Yahoo Weather XML namespace, we need to
create a namespace-aware SAXReader in the createXmlReader() method. Once we create this
reader and parse the document, we get an org.dom4j.Document object back. Instead of iterating
through child elements, we simply address each piece of information we need using an XPath expression.
Dom4J provides the XML parsing in this example, and Jaxen provides the XPath capabilities.

Once we’ve created a Weather object, we need to format our output for human consumption. Create a
file named WeatherFormatter.java in the same directory as the other classes.

Simple Weather’s WeatherFormatter Class

package org.sonatype.mavenbook.weather;

import java.io.InputStreamReader;
import java.io.Reader;
import java.io.StringWriter;

import org.apache.log4j.Logger;
import org.apache.velocity.VelocityContext;
import org.apache.velocity.app.Velocity;

public class WeatherFormatter {

private static Logger log = Logger.getLogger(WeatherFormatter.class);

public String format(Weather weather) throws Exception {
log.info("Formatting Weather Data");

Maven by Example 49 / 155

Reader reader =
new InputStreamReader(getClass().getClassLoader()

.getResourceAsStream("output.vm"));
VelocityContext context = new VelocityContext();
context.put("weather", weather);
StringWriter writer = new StringWriter();
Velocity.evaluate(context, writer, "", reader);
return writer.toString();

}
}

The WeatherFormatter uses Velocity to render a template. The format() method takes a Wea
ther bean and spits out a formatted String. The first thing the format() method does is load a
Velocity template from the classpath named output.vm. We then create a VelocityContext which
is populated with a single Weather object named weather. A StringWriter is created to hold the
results of the template merge. The template is evaluated with a call to Velocity.evaluate() and
the results are returned as a String.

Before we can run this example, we’ll need to add some resources to our classpath.

4.7 Add Resources

This project depends on two classpath resources: the Main class that configures Log4J with a classpath
resource named log4j.properties, and the WeatherFormatter that references a Velocity tem-
plate from the classpath named output.vm. Both of these resources need to be in the default package
(or the root of the classpath).

To add these resources, we’ll need to create a new directory from the base directory of the project: src/
main/resources. Since this directory was not created by the archetype:generate task, we
need to create it by executing the following commands from the project’s base directory:

$ cd src/main
$ mkdir resources
$ cd resources

Once the resources directory is created, we can add the two resources. First, add the log4j.propert
ies file in the resources directory, as shown in Simple Weather’s Log4J Configuration File.

Simple Weather’s Log4J Configuration File

Maven by Example 50 / 155

Set root category priority to INFO and its only appender to CONSOLE.
log4j.rootCategory=INFO, CONSOLE

CONSOLE is set to be a ConsoleAppender using a PatternLayout.
log4j.appender.CONSOLE=org.apache.log4j.ConsoleAppender
log4j.appender.CONSOLE.Threshold=INFO
log4j.appender.CONSOLE.layout=org.apache.log4j.PatternLayout
log4j.appender.CONSOLE.layout.ConversionPattern=%-4r %-5p %c{1} %x - %m%n

This log4j.properties file simply configures Log4J to print all log messages to standard output us-
ing a PatternLayout. Lastly, we need to create the output.vm, which is the Velocity template used
to render the output of this command-line program. Create output.vm in the resources directory.

Simple Weather’s Output Velocity Template

Current Weather Conditions for:
${weather.city}, ${weather.region}, ${weather.country}

Temperature: ${weather.temp}
Condition: ${weather.condition}
Humidity: ${weather.humidity}
Wind Chill: ${weather.chill}

This template contains a number of references to a variable named weather, which is the Weather
bean that was passed to the WeatherFormatter. The ${weather.temp} syntax is shorthand for
retrieving and displaying the value of the temp bean property. Now that we have all of our project’s code
in the right place, we can use Maven to run the example.

4.8 Running the Simple Weather Program

Using the Exec plugin from the Codehaus Mojo project, we can run the Main class:

$ mvn install
$ mvn exec:java -Dexec.mainClass=org.sonatype.mavenbook.weather.Main
...
[INFO] [exec:java]
0INFO YahooRetriever - Retrieving Weather Data
134 INFO YahooParser - Creating XML Reader
333 INFO YahooParser - Parsing XML Response

http://mojo.codehaus.org

Maven by Example 51 / 155

420 INFO WeatherFormatter - Formatting Weather Data

Current Weather Conditions for:
Evanston, IL, US

Temperature: 45
Condition: Cloudy
Humidity: 76
Wind Chill: 38

...

We didn’t supply a command-line argument to the Main class, so we ended up with the default zip code,
60202. To supply a zip code, we would use the -Dexec.args argument and pass in a zip code:

$ mvn exec:java -Dexec.mainClass=org.sonatype.mavenbook.weather.Main \
-Dexec.args="70112"

...
[INFO] [exec:java]
0 INFO YahooRetriever - Retrieving Weather Data
134 INFO YahooParser - Creating XML Reader
333 INFO YahooParser - Parsing XML Response
420 INFO WeatherFormatter - Formatting Weather Data

Current Weather Conditions for:
New Orleans, LA, US

Temperature: 82
Condition: Fair
Humidity: 71
Wind Chill: 82

[INFO] Finished at: Sun Aug 31 09:33:34 CDT 2008
...

As you can see, we’ve successfully executed the Simple Weather command-line tool, retrieved some
data from Yahoo Weather, parsed the result, and formatted the resulting data with Velocity. We achieved
all of this without doing much more than writing our project’s source code and adding some minimal
configuration to the pom.xml. Notice that no “build process” was involved. We didn’t need to define
how or where the Java compiler compiles our source to bytecode, and we didn’t need to instruct the build
system how to locate the bytecode when we executed the example application. All we needed to do to
include a few dependencies was locate the appropriate Maven coordinates.

Maven by Example 52 / 155

4.8.1 The Maven Exec Plugin

The Exec plugin allows you to execute Java classes and other scripts. It is not a core Maven plugin, but it
is available from the Mojo project hosted by Codehaus. For a full description of the Exec plugin, run:

$ mvn help:describe -Dplugin=exec -Dfull

This will list all of the goals that are available in the Maven Exec plugin. The Help plugin will also list
all of the valid parameters for the Exec plugin. If you would like to customize the behavior of the Exec
plugin you should use the documentation provided by help:describe as a guide. Although the Exec
plugin is useful, you shouldn’t rely on it as a way to execute your application outside of running tests
during development. For a more robust solution, use the Maven Assembly plugin that is demonstrated in
the section Section 4.13, later in this chapter.

4.8.2 Exploring Your Project Dependencies

The Exec plugin makes it possible for us to run the Simple Weather program without having to load the
appropriate dependencies into the classpath. In any other build system, we would have to copy all of
the program dependencies into some sort of lib/ directory containing a collection of JAR files. Then,
we would have to write a simple script that includes our program’s bytecode and all of our dependencies
in a classpath. Only then could we run java org.sonatype.mavenbook.weather.Main. The
Exec plugin leverages the fact that Maven already knows how to create and manage your classpath and
dependencies.

This is convenient, but it’s also nice to know exactly what is being included in your project’s classpath.
Although the project depends on a few libraries such as Dom4J, Log4J, Jaxen, and Velocity, it also relies
on a few transitive dependencies. If you need to find out what is on the classpath, you can use the Maven
Dependency plugin to print out a list of dependencies.

$ mvn dependency:resolve
...
[INFO] [dependency:resolve]
[INFO]
[INFO] The following files have been resolved:
[INFO]com.ibm.icu:icu4j:jar:2.6.1 (scope = compile)
[INFO]commons-collections:commons-collections:jar:3.1 (scope = compile)
[INFO]commons-lang:commons-lang:jar:2.1 (scope = compile)
[INFO]dom4j:dom4j:jar:1.6.1 (scope = compile)
[INFO]jaxen:jaxen:jar:1.1.1 (scope = compile)
[INFO]jdom:jdom:jar:1.0 (scope = compile)
[INFO]junit:junit:jar:3.8.1 (scope = test)
[INFO]log4j:log4j:jar:1.2.14 (scope = compile)

http://mojo.codehaus.org
http://www.codehaus.org

Maven by Example 53 / 155

[INFO]oro:oro:jar:2.0.8 (scope = compile)
[INFO]velocity:velocity:jar:1.5 (scope = compile)
[INFO]xalan:xalan:jar:2.6.0 (scope = compile)
[INFO]xerces:xercesImpl:jar:2.6.2 (scope = compile)
[INFO]xerces:xmlParserAPIs:jar:2.6.2 (scope = compile)
[INFO]xml-apis:xml-apis:jar:1.0.b2 (scope = compile)
[INFO]xom:xom:jar:1.0 (scope = compile)

As you can see, our project has a very large set of dependencies. While we only included direct depen-
dencies on four libraries, we appear to be depending on 15 dependencies in total. Dom4J depends on
Xerces and the XML Parser APIs, and Jaxen depends on Xalan. The Dependency plugin is going to print
out the final combination of dependencies under which your project is being compiled. If you would like
to know about the entire dependency tree of your project, you can run the dependency:tree goal.

$ mvn dependency:tree
...
[INFO] [dependency:tree]
[INFO] org.sonatype.mavenbook.custom:simple-weather:jar:1.0
[INFO] +- log4j:log4j:jar:1.2.14:compile
[INFO] +- dom4j:dom4j:jar:1.6.1:compile
[INFO] | \- xml-apis:xml-apis:jar:1.0.b2:compile
[INFO] +- jaxen:jaxen:jar:1.1.1:compile
[INFO] | +- jdom:jdom:jar:1.0:compile
[INFO] | +- xerces:xercesImpl:jar:2.6.2:compile
[INFO] | \- xom:xom:jar:1.0:compile
[INFO] | +- xerces:xmlParserAPIs:jar:2.6.2:compile
[INFO] | +- xalan:xalan:jar:2.6.0:compile
[INFO] | \- com.ibm.icu:icu4j:jar:2.6.1:compile
[INFO] +- velocity:velocity:jar:1.5:compile
[INFO] | +- commons-collections:commons-collections:jar:3.1:compile
[INFO] | +- commons-lang:commons-lang:jar:2.1:compile
[INFO] | \- oro:oro:jar:2.0.8:compile
[INFO] +- org.apache.commons:commons-io:jar:1.3.2:test
[INFO] \- junit:junit:jar:3.8.1:test
...

If you’re truly adventurous or want to see the full dependency trail, including artifacts that were rejected
due to conflicts and other reasons, run Maven with the -X debug flag.

$ mvn install -X
...
[DEBUG] org.sonatype.mavenbook.custom:simple-weather:jar:1.0 (selected for ←↩

null)
[DEBUG] log4j:log4j:jar:1.2.14:compile (selected for compile)
[DEBUG] dom4j:dom4j:jar:1.6.1:compile (selected for compile)
[DEBUG] xml-apis:xml-apis:jar:1.0.b2:compile (selected for compile)
[DEBUG] jaxen:jaxen:jar:1.1.1:compile (selected for compile)

Maven by Example 54 / 155

[DEBUG] jaxen:jaxen:jar:1.1-beta-6:compile (removed -)
[DEBUG] jaxen:jaxen:jar:1.0-FCS:compile (removed -)
[DEBUG] jdom:jdom:jar:1.0:compile (selected for compile)
[DEBUG] xml-apis:xml-apis:jar:1.3.02:compile (removed - nearer: 1.0.b2)
[DEBUG] xerces:xercesImpl:jar:2.6.2:compile (selected for compile)
[DEBUG] xom:xom:jar:1.0:compile (selected for compile)
[DEBUG] xerces:xmlParserAPIs:jar:2.6.2:compile (selected for compile)
[DEBUG] xalan:xalan:jar:2.6.0:compile (selected for compile)
[DEBUG] xml-apis:xml-apis:1.0.b2.
[DEBUG] com.ibm.icu:icu4j:jar:2.6.1:compile (selected for compile)
[DEBUG] velocity:velocity:jar:1.5:compile (selected for compile)
[DEBUG] commons-collections:commons-collections:jar:3.1:compile
[DEBUG] commons-lang:commons-lang:jar:2.1:compile (selected for compile)
[DEBUG] oro:oro:jar:2.0.8:compile (selected for compile)
[DEBUG] junit:junit:jar:3.8.1:test (selected for test)

In the debug output, we see some of the guts of the dependency management system at work. What you
see here is the tree of dependencies for this project. Maven is printing out the full Maven coordinates for
all of your project’s dependencies and the mechanism at work.

4.9 Writing Unit Tests

Maven has built-in support for unit tests, and testing is a part of the default Maven lifecycle. Let’s add
some unit tests to our simple weather project. First, let’s create the org.sonatype.mavenbook.
weather package under src/test/java:

$ cd src/test/java
$ cd org/sonatype/mavenbook
$ mkdir -p weather/yahoo
$ cd weather/yahoo

At this point, we will create two unit tests. The first will test the YahooParser, and the second will
test the WeatherFormatter. In the weather package, create a file named YahooParserTest.
java with the contents shown in the next example.

Simple Weather’s YahooParserTest Unit Test

package org.sonatype.mavenbook.weather.yahoo;

import java.io.InputStream;

Maven by Example 55 / 155

import junit.framework.TestCase;

import org.sonatype.mavenbook.weather.Weather;
import org.sonatype.mavenbook.weather.YahooParser;

public class YahooParserTest extends TestCase {

public YahooParserTest(String name) {
super(name);

}

public void testParser() throws Exception {
InputStream nyData = getClass().getClassLoader()

.getResourceAsStream("ny-weather.xml");
Weather weather = new YahooParser().parse(nyData);
assertEquals("New York", weather.getCity());
assertEquals("NY", weather.getRegion());
assertEquals("US", weather.getCountry());
assertEquals("39", weather.getTemp());
assertEquals("Fair", weather.getCondition());
assertEquals("39", weather.getChill());
assertEquals("67", weather.getHumidity());

}
}

This YahooParserTest extends the TestCase class defined by JUnit. It follows the usual pattern for
a JUnit test: a constructor that takes a single String argument that calls the constructor of the superclass,
and a series of public methods that begin with “test” that are invoked as unit tests. We define a single
test method, testParser, which tests the YahooParser by parsing an XML document with known
values. The test XML document is named ny-weather.xml and is loaded from the classpath. We’ll
add test resources in Section 4.11. In our Maven project’s directory layout, the ny-weather.xml
file is found in the directory that contains test resources — ${basedir}/src/test/resources
under org/sonatype/mavenbook/weather/yahoo/ny-weather.xml. The file is read as an
InputStream and passed to the parse()method on YahooParser. The parse()method returns
a Weather object, which is then tested with a series of calls to assertEquals(), a method defined
by TestCase.

In the same directory, create a file named WeatherFormatterTest.java.

Simple Weather’s WeatherFormatterTest Unit Test

package org.sonatype.mavenbook.weather.yahoo;

import java.io.InputStream;

import org.apache.commons.io.IOUtils;

Maven by Example 56 / 155

import org.sonatype.mavenbook.weather.Weather;
import org.sonatype.mavenbook.weather.WeatherFormatter;
import org.sonatype.mavenbook.weather.YahooParser;

import junit.framework.TestCase;

public class WeatherFormatterTest extends TestCase {

public WeatherFormatterTest(String name) {
super(name);

}

public void testFormat() throws Exception {
InputStream nyData = getClass().getClassLoader()
.getResourceAsStream("ny-weather.xml");

Weather weather = new YahooParser().parse(nyData);
String formattedResult = new WeatherFormatter().format(weather);
InputStream expected = getClass().getClassLoader()
.getResourceAsStream("format-expected.dat");

assertEquals(IOUtils.toString(expected).trim(),
formattedResult.trim());

}
}

The second unit test in this simple project tests the WeatherFormatter. Like the YahooParserT
est, the WeatherFormatterTest also extends JUnit’s TestCase class. The single test function
reads the same test resource from ${basedir}/src/test/resources under the org/sonat
ype/mavenbook/weather/yahoo directory via this unit test’s classpath. We’ll add test resources
in Section 4.11. WeatherFormatterTest runs this sample input file through the YahooParser
which spits out a Weather object, and this object is then formatted with the WeatherFormatter.
Since the WeatherFormatter prints out a String, we need to test it against some expected input.
Our expected input has been captured in a text file named format-expected.dat which is in the
same directory as ny-weather.xml. To compare the test’s output to the expected output, we read this
expected output in as an InputStream and use Commons IO’s IOUtils class to convert this file to a
String. This String is then compared to the test output using assertEquals().

4.10 Adding Test-scoped Dependencies

In WeatherFormatterTest, we used a utility from Apache Commons IO—the IOUtils class.
IOUtils provides a number of helpful static methods that take most of the work out of input/output
operations. In this particular unit test, we used IOUtils.toString() to copy the format-expec

Maven by Example 57 / 155

ted.dat classpath resource to a String. We could have done this without using Commons IO, but it
would have required an extra six or seven lines of code to deal with the various InputStreamReader
and StringWriter objects. The main reason we used Commons IO was to give us an excuse to add a
test-scoped dependency on Commons IO.

A test-scoped dependency is a dependency that is available on the classpath only during test compilation
and test execution. If your project has war or ear packaging, a test-scoped dependency would not
be included in the project’s output archive. To add a test-scoped dependency, add the dependency
element to your project’s dependencies section, as shown in the following example:

Adding a Test-scoped Dependency

<project>
...
<dependencies>

...
<dependency>

<groupId>org.apache.commons</groupId>
<artifactId>commons-io</artifactId>
<version>1.3.2</version>
<scope>test</scope>

</dependency>
...

</dependencies>
</project>

After you add this dependency to the pom.xml, run mvn dependency:resolve and you should
see that commons-io is now listed as a dependency with scope test. We need to do one more thing
before we are ready to run this project’s unit tests. We need to create the classpath resources these unit
tests depend on.

4.11 Adding Unit Test Resources

A unit test has access to a set of resources which are specific to tests. Often you’ll store files containing
expected results and files containing dummy input in the test classpath. In this project, we’re storing a test
XML document for YahooParserTest named ny-weather.xml and a file containing expected
output from the WeatherFormatter in format-expected.dat.

To add test resources, you’ll need to create the src/test/resources directory. This is the default
directory in which Maven looks for unit test resources. To create this directory execute the following

Maven by Example 58 / 155

commands from your project’s base directory.

$ cd src/test
$ mkdir resources
$ cd resources

Once you’ve create the resources directory, create a file named format-expected.dat in the reso
urces directory.

Simple Weather’s WeatherFormatterTest Expected Output

Current Weather Conditions for:
New York, NY, US

Temperature: 39
Condition: Fair
Humidity: 67
Wind Chill: 39

This file should look familiar. It is the same output that was generated previously when you ran the Simple
Weather project with the Maven Exec plugin. The second file you’ll need to add to the resources directory
is ny-weather.xml.

Simple Weather’s YahooParserTest XML Input

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<rss version="2.0" xmlns:yweather="http://xml.weather.yahoo.com/ns/rss ←↩

/1.0"
xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#">

<channel>
<title>Yahoo Weather - New York, NY</title>
<link>http://us.rd.yahoo.com/dailynews/rss/weather/New_York__NY/
</link>

<description>Yahoo Weather for New York, NY</description>
<language>en-us</language>
<lastBuildDate>Sat, 10 Nov 2007 8:51 pm EDT</lastBuildDate>

<ttl>60</ttl>
<yweather:location city="New York" region="NY" country="US" />
<yweather:units temperature="F" distance="mi" pressure="in"
speed="mph"/>

<yweather:wind chill="39" direction="0" speed="0" />
<yweather:atmosphere humidity="67" visibility="1609"
pressure="30.18" rising="1" />

Maven by Example 59 / 155

<yweather:astronomy sunrise="6:36 am" sunset="4:43 pm" />

<item>
<title>Conditions for New York, NY at 8:51 pm EDT</title>
<geo:lat>40.67</geo:lat>
<geo:long>-73.94</geo:long>
<link>http://us.rd.yahoo.com/dailynews/rss/weather/New_York__NY/
</link>

<pubDate>Sat, 10 Nov 2007 8:51 pm EDT</pubDate>
<yweather:condition text="Fair" code="33" temp="39"

date="Sat, 10 Nov 2007 8:51 pm EDT"/>
<description><![CDATA[

Current Conditions:

Fair, 39 F

Forecast:

Sat - Partly Cloudy. High: 45 Low: 32

Sun - Sunny. High: 50 Low: 38

]]></description>

<yweather:forecast day="Sat" date="10 Nov 2007" low="32" high="45"
text="Partly Cloudy" code="29" />

<yweather:forecast day="Sun" date="11 Nov 2007" low="38" high="50"
text="Sunny" code="32" />

<guid isPermaLink="false">10002_2007_11_10_20_51_EDT</guid>
</item>

</channel>
</rss>

This file contains a test XML document for the YahooParserTest. We store this file so that we can
test the YahooParser without having to retrieve an XML response from Yahoo Weather.

4.12 Executing Unit Tests

Now that your project has unit tests, let’s run them. You don’t have to do anything special to run a unit
test; the test phase is a normal part of the Maven lifecycle. You run Maven tests whenever you run mvn

Maven by Example 60 / 155

package or mvn install. If you would like to run all the lifecycle phases up to and including the
test phase, run mvn test:

$ mvn test
...
[INFO] [surefire:test]
[INFO] Surefire report directory:
~/examples/ch-custom/simple-weather/target/surefire-reports

T E S T S

Running org.sonatype.mavenbook.weather.yahoo.WeatherFormatterTest
0 INFO YahooParser - Creating XML Reader
177 INFO YahooParser - Parsing XML Response
239 INFO WeatherFormatter - Formatting Weather Data
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.547 sec
Running org.sonatype.mavenbook.weather.yahoo.YahooParserTest
475 INFO YahooParser - Creating XML Reader
483 INFO YahooParser - Parsing XML Response
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.018 sec

Results :

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0

Executing mvn test from the command line caused Maven to execute all lifecycle phases up to the
test phase. The Maven Surefire plugin has a test goal which is bound to the test phase. This test
goal executes all of the unit tests this project can find under src/test/java with filenames matching
**/Test*.java, **/*Test.java and **/*TestCase.java. In the case of this project, you
can see that the Surefire plugin’s test goal executed WeatherFormatterTest and YahooParser
Test. When the Maven Surefire plugin runs the JUnit tests, it also generates XML and text reports in the
${basedir}/target/surefire-reports directory. If your tests are failing, you should look in
this directory for details like stack traces and error messages generated by your unit tests.

4.12.1 Ignoring Test Failures

You will often find yourself developing on a system that has failing unit tests. If you are practicing
Test-Driven Development (TDD), you might use test failure as a measure of how close your project is to
completeness. If you have failing unit tests, and you would still like to produce build output, you are going
to have to tell Maven to ignore build failures. When Maven encounters a build failure, its default behavior
is to stop the current build. To continue building a project even when the Surefire plugin encounters failed
test cases, you’ll need to set the testFailureIgnore configuration property of the Surefire plugin to

Maven by Example 61 / 155

true.

Ignoring Unit Test Failures

<project>
[...]
<build>

<plugins>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<configuration>

<testFailureIgnore>true</testFailureIgnore>
</configuration>

</plugin>
</plugins>

</build>
[...]

</project>

The plugin documents (http://maven.apache.org/plugins/maven-surefire-plugin/test-mojo.html) show that
this parameter declares an expression:

Plugin Parameter Expressions

testFailureIgnore Set this to true to ignore a failure during
testing. Its use is NOT RECOMMENDED, but quite
convenient on occasion.

* Type: boolean

* Required: No

* User Property: maven.test.failure.ignore

This property can be set from the command line using the -D parameter:

$ mvn test -Dmaven.test.failure.ignore=true

4.12.2 Skipping Unit Tests

You may want to configure Maven to skip unit tests altogether. Maybe you have a very large system
where the unit tests take minutes to complete and you don’t want to wait for unit tests to complete before

http://maven.apache.org/plugins/maven-surefire-plugin/test-mojo.html

Maven by Example 62 / 155

producing output. You might be working with a legacy system that has a series of failing unit tests, and
instead of fixing the unit tests, you might just want to produce a JAR. Maven provides for the ability to
skip unit tests using the skip parameter of the Surefire plugin. To skip tests from the command line,
simply add the maven.test.skip property to any goal:

$ mvn install -Dmaven.test.skip=true
...
[INFO] [compiler:testCompile]
[INFO] Not compiling test sources
[INFO] [surefire:test]
[INFO] Tests are skipped.
...

When the Surefire plugin reaches the test goal, it will skip the unit tests if the maven.test.skip
properties is set to true. Another way to configure Maven to skip unit tests is to add this configuration
to your project’s pom.xml. To do this, you would add a plugin element to your build configuration.

Skipping Unit Tests
<project>

[...]
<build>

<plugins>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<configuration>

<skip>true</skip>
</configuration>

</plugin>
</plugins>

</build>
[...]

</project>

4.13 Building a Packaged Command Line Application

In Section 4.8 earlier in descriptor in the Maven Assembly plugin to produce a distributable JAR file,
which contains the project’s bytecode and all of the dependencies.

The Maven Assembly plugin is a plugin you can use to create arbitrary distributions for your applications.
You can use the Maven Assembly plugin to assemble the output of your project in any format you desire

Maven by Example 63 / 155

by defining a custom assembly descriptor. In a later chapter we will show you how to create a custom
assembly descriptor which produces a more complex archive for the Simple Weather application. In this
chapter, we’re going to use the predefined jar-with-dependencies format. To configure the Maven
Assembly Plugin, we need to add the following plugin configuration to our existing build configuration
in the pom.xml.

Configuring the Maven Assembly Descriptor

<project>
[...]
<build>

<plugins>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>

<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>

</descriptorRefs>
</configuration>

</plugin>
</plugins>

</build>
[...]

</project>

Once you’ve added this configuration, you can build the assembly by running the assembly:assem
bly goal. In the following screen listing, the assembly:assembly goal is executed after the Maven
build reaches the install lifecycle phase:

$ mvn install assembly:assembly
...
[INFO] [jar:jar]
[INFO] Building jar:
~/examples/ch-custom/simple-weather/target/simple-weather-1.0.jar
[INFO] [assembly:assembly]
[INFO] Processing DependencySet (output=)
[INFO] Expanding: \
.m2/repository/dom4j/dom4j/1.6.1/dom4j-1.6.1.jar into \
/tmp/archived-file-set.1437961776.tmp
[INFO] Expanding: .m2/repository/commons-lang/commons-lang/2.1/\
commons-lang-2.1.jar
into /tmp/archived-file-set.305257225.tmp
... (Maven Expands all dependencies into a temporary directory) ...
[INFO] Building jar: \
~/examples/ch-custom/simple-weather/target/\
simple-weather-1.0-jar-with-dependencies.jar

Maven by Example 64 / 155

Once our assembly is assembled in target/simple-weather-1.0-jar-with-dependencies.
jar, we can run the Main class again from the command line. To run the simple weather application’s
Main class, execute the following commands from your project’s base directory:

$ cd target
$ java -cp simple-weather-1.0-jar-with-dependencies.jar \

org.sonatype.mavenbook.weather.Main 10002
0 INFO YahooRetriever - Retrieving Weather Data
221 INFO YahooParser - Creating XML Reader
399 INFO YahooParser - Parsing XML Response
474 INFO WeatherFormatter - Formatting Weather Data

Current Weather Conditions for:
New York, NY, US

Temperature: 44
Condition: Fair
Humidity: 40
Wind Chill: 40

The jar-with-dependencies format creates a single JAR file that includes all of the bytecode from
the simple-weather project as well as the unpacked bytecode from all of the dependencies. This
somewhat unconventional format produces a 9 MiB JAR file containing approximately 5,290 classes, but
it does provide for an easy distribution format for applications you’ve developed with Maven. Later in this
book, we’ll show you how to create a custom assembly descriptor to produce a more standard distribution.

4.13.1 Attaching the Assembly Goal to the Package Phase

In Maven 1, a build was customized by stringing together a series of plugin goals. Each plugin goal had
prerequisites and defined a relationship to other plugin goals. With the release of Maven 2, a lifecycle
was introduced and plugin goals are now associated with a series of phases in a default Maven build
lifecycle. The lifecycle provides a solid foundation that makes it easier to predict and manage the plugin
goals which will be executed in a given build. In Maven 1, plugin goals related to one another directly; in
Maven 2, plugin goals relate to a set of common lifecycle stages. While it is certainly valid to execute a
plugin goal directly from the command line as we just demonstrated, it is more consistent with the design
of Maven to configure the Assembly plugin to execute the assembly:assembly goal during a phase
in the Maven lifecycle.

The following plugin configuration configures the Maven Assembly plugin to execute the attached
goal during the package phase of the Maven default build lifecycle. The attached goal does the
same thing as the assembly goal. To bind to assembly:attached goal to the package phase we

Maven by Example 65 / 155

use the executions element under plugin in the build section of the project’s POM.

Configuring Attached Goal Execution During the Package Lifecycle Phase

<project>
[...]
<build>

<plugins>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>

<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>

</descriptorRefs>
</configuration>
<executions>

<execution>
<id>simple-command</id>
<phase>package</phase>
<goals>

<goal>attached</goal>
</goals>

</execution>
</executions>

</plugin>
</plugins>

</build>
[...]

</project>

Once you have this configuration in your POM, all you need to do to generate the assembly is run mvn
package. The execution configuration will make sure that the assembly:attached goal is executed
when the Maven lifecycle transitions to the package phase of the lifecycle. The assembly will also be
created if you run mvn install, as the package phase precedes the install phase in the default
Maven lifecycle.

Maven by Example 66 / 155

Chapter 5

A Simple Web Application

5.1 Introduction

In this chapter, we create a simple web application with the Maven Archetype plugin. We’ll run this
web application in a Servlet container named Jetty, add some dependencies, write a simple Servlet, and
generate a WAR file. At the end of this chapter, you will be able to start using Maven to accelerate the
development of web applications.

5.1.1 Downloading this Chapter’s Example

The example in this chapter is generated with the Maven Archetype plugin. While you should be able to
follow the development of this chapter without the example source code, we recommend downloading a
copy of the example code to use as a reference. This chapter’s example project may be downloaded with
the book’s example code at:

http://books.sonatype.com/mvnex-book/mvnex-examples.zip

Unzip this archive in any directory, and then go to the ch-simple-web directory. There you will see a
directory named simple-webapp, which contains the Maven project developed in this chapter.

Maven by Example 67 / 155

5.2 Defining the Simple Web Application

We’ve purposefully kept this chapter focused on Plain-Old Web Applications (POWA)—a Spring Frame-
work; and the other that uses Plexus.

5.3 Creating the Simple Web Project

To create your web application:

$ mvn archetype:generate -DgroupId=org.sonatype.mavenbook.simpleweb \
-DartifactId=simple-webapp \
-Dpackage=org.sonatype.mavenbook \
-Dversion=1.0-SNAPSHOT

...
[INFO] [archetype:generate {execution: default-cli}]
Choose archetype:
...
19: internal -> maven-archetype-webapp (A simple Java web application)
...
Choose a number: (...) 15: : 19
Confirm properties configuration:
groupId: org.sonatype.mavenbook.simpleweb
artifactId: simple-webapp
version: 1.0-SNAPSHOT
package: org.sonatype.mavenbook.simpleweb
Y: : Y
[INFO] Parameter: groupId, Value: org.sonatype.mavenbook.simpleweb
[INFO] Parameter: packageName, Value: org.sonatype.mavenbook.simpleweb
[INFO] Parameter: package, Value: org.sonatype.mavenbook.simpleweb
[INFO] Parameter: artifactId, Value: simple-webapp
[INFO] Parameter: basedir, Value: /private/tmp
[INFO] Parameter: version, Value: 1.0-SNAPSHOT
...
[INFO] BUILD SUCCESSFUL

Once the Maven Archetype plugin creates the project, change directories into the simple-webapp
directory and take a look at the pom.xml. You should see something close to the following.

Initial POM for the simple-webapp Project

<project xmlns="http://maven.apache.org/POM/4.0.0"

Maven by Example 68 / 155

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.sonatype.mavenbook.simpleweb</groupId>
<artifactId>simple-webapp</artifactId>
<packaging>war</packaging>
<version>1.0-SNAPSHOT</version>
<name>simple-webapp Maven Webapp</name>
<url>http://maven.apache.org</url>
<dependencies>

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>
</dependencies>
<build>

<finalName>simple-webapp</finalName>
</build>

</project>

Next, you will need to configure the Maven Compiler plugin to target Java 5. To do this, add the plugins
element to the initial POM as shown in POM for the simple-webapp Project with Compiler Configuration.

POM for the simple-webapp Project with Compiler Configuration

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.sonatype.mavenbook.simpleweb</groupId>
<artifactId>simple-webapp</artifactId>
<packaging>war</packaging>
<version>1.0-SNAPSHOT</version>
<name>simple-webapp Maven Webapp</name>
<url>http://maven.apache.org</url>
<dependencies>

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
<scope>test</scope>

</dependency>
</dependencies>

Maven by Example 69 / 155

<build>
<finalName>simple-webapp</finalName>
<plugins>

<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.3</version>
<configuration>

<source>1.5</source>
<target>1.5</target>

</configuration>
</plugin>

</plugins>
</build>

</project>

Notice the packaging element contains the value war. This packaging type is what configures Maven
to produce a web application archive in a WAR file. A project with war packaging is going to create
a WAR file in the target/ directory. The default name of this file is ${artifactId}-${versi
on}.war. In this project, the default WAR would be generated in target/simple-webapp-1.
0-SNAPSHOT.war. In the simple-webapp project, we’ve customized the name of the generated
WAR file by adding a finalName element inside of this project’s build configuration. With a finalName of
simple-webapp, the package phase produces a WAR file in target/simple-webapp.war.

5.4 Configuring the Jetty Plugin

Configuring the Jetty Plugin

<project>
[...]
<build>

<finalName>simple-webapp</finalName>
<plugins>

<plugin>
<groupId>org.mortbay.jetty</groupId>
<artifactId>maven-jetty-plugin</artifactId>

</plugin>
</plugins>

</build>
[...]

</project>

Maven by Example 70 / 155

Once you’ve configured the Maven Jetty Plugin in your project’s pom.xml, you can then invoke the Run
goal of the Jetty plugin to start your web application in the Jetty Servlet container. Run mvn jetty:
run from the simple-webapp/ project directory as follows:

~/examples/ch-simple-web/simple-webapp $ mvn jetty:run
...
[INFO] [jetty:run]
[INFO] Configuring Jetty for project: simple-webapp Maven Webapp
[INFO] Webapp source directory = \
~/svnw/sonatype/examples/ch-simple-web/simple-webapp/src/main/webapp
[INFO] web.xml file = \
~/svnw/sonatype/examples/ch-simple-web/\
simple-webapp/src/main/webapp/WEB-INF/web.xml
[INFO] Classes = ~/svnw/sonatype/examples/ch-simple-web/\
simple-webapp/target/classes
2007-11-17 22:11:50.532::INFO: Logging to STDERR via org.mortbay.log. ←↩

StdErrLog
[INFO] Context path = /simple-webapp
[INFO] Tmp directory = determined at runtime
[INFO] Web defaults = org/mortbay/jetty/webapp/webdefault.xml
[INFO] Web overrides = none
[INFO] Webapp directory = \
~/svnw/sonatype/examples/ch-simple-web/simple-webapp/src/main/webapp
[INFO] Starting jetty 6.1.6rc1 ...
2007-11-17 22:11:50.673::INFO: jetty-6.1.6rc1
2007-11-17 22:11:50.846::INFO: No Transaction manager found
2007-11-17 22:11:51.057::INFO: Started SelectChannelConnector@0 ←↩

.0.0.0:8080
[INFO] Started Jetty Server

Warning
If you are running the Maven Jetty Plugin on a Windows platform you may need to move your
local Maven repository to a directory that does not contain spaces. Some readers have reported
issues on Jetty startup caused by a repository that was being stored under C:\Documents a
nd Settings\<user>. The solution to this problem is to move your local Maven repository
to a directory that does not contain spaces and redefine the location of your local repository in
~/.m2/settings.xml.

After Maven starts the Jetty Servlet container, load the URL http://localhost:8080/simple-webapp/ in a
web browser. The simple index.jsp generated by the Archetype is trivial; it contains a second-level
heading with the text "Hello World!". Maven expects the document root of the web application to be
stored in src/main/webapp. It is in this directory where you will find the index.jsp file shown in
Contents of src/main/webapp/index.jsp.

http://localhost:8080/simple-webapp/

Maven by Example 71 / 155

Contents of src/main/webapp/index.jsp

<html>
<body>

<h2>Hello World!</h2>
</body>

</html>

In src/main/webapp/WEB-INF, we will find the smallest possible web application web.xml, shown
in this next example:

Contents of src/main/webapp/WEB-INF/web.xml

<!DOCTYPE web-app PUBLIC
"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd" >

<web-app>
<display-name>Archetype Created Web Application</display-name>

</web-app>

5.5 Adding a Simple Servlet

A web application with a single JSP page and no configured servlets is next to useless. Let’s add a
simple servlet to this application and make some changes to the pom.xml and web.xml to support this
change. First, we’ll need to create a new package under src/main/java named org.sonatype.
mavenbook.web:

$ mkdir -p src/main/java/org/sonatype/mavenbook/web
$ cd src/main/java/org/sonatype/mavenbook/web

Once you’ve created this package, change to the src/main/java/org/sonatype/mavenbook/
web directory and create a class named SimpleServlet in SimpleServlet.java, which contains
the code shown in the SimpleServlet class:

SimpleServlet Class

package org.sonatype.mavenbook.web;

import java.io.*;

Maven by Example 72 / 155

import javax.servlet.*;
import javax.servlet.http.*;

public class SimpleServlet extends HttpServlet {
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

PrintWriter out = response.getWriter();
out.println("SimpleServlet Executed");
out.flush();
out.close();

}
}

Our SimpleServlet class is just that: a servlet that prints a simple message to the response’s Writer.
To add this servlet to your web application and map it to a request path, add the servlet and servlet-
mapping elements shown in the following web.xml to your project’s web.xml file. The web.xml
file can be found in src/main/webapp/WEB-INF.

Mapping the Simple Servlet

<!DOCTYPE web-app PUBLIC
"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd" >

<web-app>
<display-name>Archetype Created Web Application</display-name>
<servlet>

<servlet-name>simple</servlet-name>
<servlet-class>
org.sonatype.mavenbook.web.SimpleServlet

</servlet-class>
</servlet>
<servlet-mapping>

<servlet-name>simple</servlet-name>
<url-pattern>/simple</url-pattern>

</servlet-mapping>
</web-app>

Everything is in place to test this servlet; the class is in src/main/java and the web.xml has been
updated. Before we launch the Jetty plugin, compile your project by running mvn compile:

~/examples/ch-simple-web/simple-webapp $ mvn compile
...
[INFO] [compiler:compile]

Maven by Example 73 / 155

[INFO] Compiling 1 source file to \
~/examples/ch-simple-web/simple-webapp/target/classes
[INFO] ---
[ERROR] BUILD FAILURE
[INFO] ---
[INFO] Compilation failure

/src/main/java/org/sonatype/mavenbook/web/SimpleServlet.java:[4,0] \
package javax.servlet does not exist

/src/main/java/org/sonatype/mavenbook/web/SimpleServlet.java:[5,0] \
package javax.servlet.http does not exist

/src/main/java/org/sonatype/mavenbook/web/SimpleServlet.java:[7,35] \
cannot find symbol
symbol: class HttpServlet
public class SimpleServlet extends HttpServlet {

/src/main/java/org/sonatype/mavenbook/web/SimpleServlet.java:[8,22] \
cannot find symbol
symbol : class HttpServletRequest
location: class org.sonatype.mavenbook.web.SimpleServlet

/src/main/java/org/sonatype/mavenbook/web/SimpleServlet.java:[9,22] \
cannot find symbol
symbol : class HttpServletResponse
location: class org.sonatype.mavenbook.web.SimpleServlet

/src/main/java/org/sonatype/mavenbook/web/SimpleServlet.java:[10,15] \
cannot find symbol
symbol : class ServletException
location: class org.sonatype.mavenbook.web.SimpleServlet

The compilation fails because your Maven project doesn’t have a dependency on the Servlet API. In the
next section, we’ll add the Servlet API to this project’s POM.

5.6 Adding J2EE Dependencies

To write a servlet, we’ll need to add the Servlet API as a dependency to the project’s POM.

Add the Servlet 2.4 Specification as a Dependency

<project>

Maven by Example 74 / 155

[...]
<dependencies>

[...]
<dependency>

<groupId>javax.servlet</groupId>
<artifactId>servlet-api</artifactId>
<version>2.4</version>
<scope>provided</scope>

</dependency>
</dependencies>
[...]

</project>

It is also worth pointing out that we have used the provided scope for this dependency. This tells
Maven that the JAR is "provided" by the container and thus should not be included in the WAR. If you
were interested in writing a custom JSP tag for this simple web application, you would need to add a
dependency on the JSP 2.0 API. Use the configuration shown in this example:

Adding the JSP 2.0 Specification as a Dependency

<project>
[...]
<dependencies>

[...]
<dependency>

<groupId>javax.servlet.jsp</groupId>
<artifactId>jsp-api</artifactId>
<version>2.0</version>
<scope>provided</scope>

</dependency>
</dependencies>
[...]

</project>

Once you’ve added the Servlet specification as a dependency, run mvn clean install followed by
mvn jetty:run.

Note
mvn jetty:run will continue to run the Jetty servlet container until you stop the process with CTRL-
C. If you started Jetty in Section 5.4, you will need to stop that process before starting Jetty a second
time.

Maven by Example 75 / 155

[tobrien@t1 simple-webapp]$ mvn clean install
...
[tobrien@t1 simple-webapp]$ mvn jetty:run
[INFO] [jetty:run]
...
2007-12-14 16:18:31.305::INFO: jetty-6.1.6rc1
2007-12-14 16:18:31.453::INFO: No Transaction manager found
2007-12-14 16:18:32.745::INFO: Started SelectChannelConnector@0 ←↩

.0.0.0:8080
[INFO] Started Jetty Server

At this point, you should be able to retrieve the output of the SimpleServlet. From the command
line, you can use curl to print the output of this servlet to standard output:

~/examples/ch-simple-web $ curl http://localhost:8080/simple-webapp/simple
SimpleServlet Executed

5.7 Conclusion

After reading this chapter, you should be able to bootstrap a simple web application. This chapter didn’t
dwell on the million different ways to create a complete web application. Other chapters provide a more
comprehensive overview of projects that involve some of the more popular web frameworks and tech-
nologies.

Maven by Example 76 / 155

Chapter 6

A Multi-Module Project

6.1 Introduction

In this chapter, we create a multi-module project that combines the examples from the two previous
chapters. The simple-weather code developed in Chapter 4 will be combined with the simple-
webapp project defined in Chapter 5 to create a web application that retrieves and displays weather
forecast information on a web page. At the end of this chapter, you will be able to use Maven to develop
complex, multi-module projects.

6.1.1 Downloading this Chapter’s Example

The multi-module project developed in this example consists of modified versions of the projects de-
veloped in Chapter 4 and Chapter 5, and we are not using the Maven Archetype plugin to generate this
multi-module project. We strongly recommend downloading a copy of the example code to use as a
supplemental reference while reading the content in this chapter. This chapter’s example project may be
downloaded with the book’s example code at:

http://books.sonatype.com/mvnex-book/mvnex-examples.zip

Unzip this archive in any directory, and then go to the ch-multi/ directory. There you will see a
directory named simple-parent, which contains the multi-module Maven project developed in this

Maven by Example 77 / 155

chapter. In this directory, you will see a pom.xml and the two submodule directories, simple-weat
her and simple-webapp.

6.2 The Simple Parent Project

A multi-module project is defined by a parent POM referencing one or more submodules. In the sim
ple-parent/ directory, you will find the parent POM (also called the top-level POM) in simple-
parent/pom.xml. See simple-parent Project POM.

simple-parent Project POM

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>org.sonatype.mavenbook.multi</groupId>
<artifactId>simple-parent</artifactId>
<packaging>pom</packaging>
<version>1.0</version>
<name>Multi Chapter Simple Parent Project</name>

<modules>
<module>simple-weather</module>
<module>simple-webapp</module>

</modules>

<build>
<pluginManagement>

<plugins>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>

<source>1.5</source>
<target>1.5</target>

</configuration>
</plugin>

</plugins>
</pluginManagement>

</build>

<dependencies>

Maven by Example 78 / 155

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>
</dependencies>

</project>

Notice that the parent defines a set of Maven coordinates: the groupId is org.sonatype.mavenb
ook.multi, the artifactId is simple-parent, and the version is 1.0. The parent project
doesn’t create a JAR or a WAR like our previous projects; instead, it is simply a POM that refers to other
Maven projects. The appropriate packaging for a project like simple-parent that simply provides a
Project Object Model is pom. The next section in the pom.xml lists the project’s submodules. These
modules are defined in the modules element, and each module element corresponds to a subdirectory
of the simple-parent directory. Maven knows to look in these directories for pom.xml files, and it
will add submodules to the list of Maven projects included in a build.

Lastly, we define some settings which will be inherited by all submodules. The simple-parent build
configuration configures the target for all Java compilation to be the Java 5 JVM. Since the compiler plu-
gin is bound to the lifecycle by default, we can use the pluginManagement section do to this. We
will discuss pluginManagement in more detail in later chapters, but the separation between providing
configuration to default plugins and actually binding plugins is much easier to see when they are sepa-
rated this way. The dependencies element adds JUnit 3.8.1 as a global dependency. Both the build
configuration and the dependencies are inherited by all submodules. Using POM inheritance allows you
to add common dependencies for universal dependencies like JUnit or Log4J.

6.3 The Simple Weather Module

The first submodule we’re going to look at is the simple-weather submodule. This submodule
contains all the code from the previous section Chapter 4.

simple-weather Module POM

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>

<groupId>org.sonatype.mavenbook.multi</groupId>

Maven by Example 79 / 155

<artifactId>simple-parent</artifactId>
<version>1.0</version>

</parent>
<artifactId>simple-weather</artifactId>
<packaging>jar</packaging>

<name>Multi Chapter Simple Weather API</name>

<build>
<pluginManagement>

<plugins>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<configuration>

<testFailureIgnore>true</testFailureIgnore>
</configuration>

</plugin>
</plugins>

</pluginManagement>
</build>

<dependencies>
<dependency>

<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.14</version>

</dependency>
<dependency>

<groupId>dom4j</groupId>
<artifactId>dom4j</artifactId>
<version>1.6.1</version>

</dependency>
<dependency>

<groupId>jaxen</groupId>
<artifactId>jaxen</artifactId>
<version>1.1.1</version>

</dependency>
<dependency>

<groupId>velocity</groupId>
<artifactId>velocity</artifactId>
<version>1.5</version>

</dependency>
<dependency>

<groupId>org.apache.commons</groupId>
<artifactId>commons-io</artifactId>
<version>1.3.2</version>
<scope>test</scope>

</dependency>

Maven by Example 80 / 155

</dependencies>
</project>

In simple-weather’s pom.xml file, we see this module referencing a parent POM using a set of
Maven coordinates. The parent POM for simple-weather is identified by a groupId of org.
sonatype.mavenbook.multi, an artifactId of simple-parent, and a version of 1.0.

The WeatherService class shown in The WeatherService Class is defined in src/main/java/
org/sonatype/mavenbook/weather, and it simply calls out to the three objects defined in Chap-
ter 4. In this chapter’s example, we’re creating a separate project that contains service objects that are
referenced in the web application project. This is a common model in enterprise Java development; often
a complex application consists of more than just a single, simple web application. You might have an
enterprise application that consists of multiple web applications and some command-line applications.
Often, you’ll want to refactor common logic to a service class that can be reused across a number of
projects. This is the justification for creating a WeatherService class; by doing so, you can see how
the simple-webapp project references a service object defined in simple-weather.

The WeatherService Class

package org.sonatype.mavenbook.weather;

import java.io.InputStream;

public class WeatherService {

public WeatherService() {}

public String retrieveForecast(String zip) throws Exception {
// Retrieve Data
InputStream dataIn = new YahooRetriever().retrieve(zip);

// Parse Data
Weather weather = new YahooParser().parse(dataIn);

// Format (Print) Data
return new WeatherFormatter().format(weather);

}
}

The retrieveForecast() method takes a String containing a zip code. This zip code parameter
is then passed to the YahooRetriever’s retrieve() method, which gets the XML from Yahoo
Weather. The XML returned from YahooRetriever is then passed to the parse() method on Yaho
oParser which returns a Weather object. This Weather object is then formatted into a presentable
String by the WeatherFormatter.

Maven by Example 81 / 155

6.4 The Simple Web Application Module

The simple-webapp module is the second submodule referenced in the simple-parent project.
This web application project depends upon the simple-weather module, and it contains some simple
servlets that present the results of the Yahoo weather service query.

simple-webapp Module POM

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>

<groupId>org.sonatype.mavenbook.multi</groupId>
<artifactId>simple-parent</artifactId>
<version>1.0</version>

</parent>

<artifactId>simple-webapp</artifactId>
<packaging>war</packaging>
<name>simple-webapp Maven Webapp</name>
<dependencies>

<dependency>
<groupId>javax.servlet</groupId>
<artifactId>servlet-api</artifactId>
<version>2.4</version>
<scope>provided</scope>

</dependency>
<dependency>

<groupId>org.sonatype.mavenbook.multi</groupId>
<artifactId>simple-weather</artifactId>
<version>1.0</version>

</dependency>
</dependencies>
<build>

<finalName>simple-webapp</finalName>
<plugins>

<plugin>
<groupId>org.mortbay.jetty</groupId>
<artifactId>maven-jetty-plugin</artifactId>

</plugin>
</plugins>

</build>
</project>

Maven by Example 82 / 155

This simple-webappmodule defines a very simple servlet that reads a zip code from an HTTP request,
calls the WeatherService shown in The WeatherService Class, and prints the results to the response’s
Writer.

simple-webapp WeatherServlet

package org.sonatype.mavenbook.web;

import org.sonatype.mavenbook.weather.WeatherService;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class WeatherServlet extends HttpServlet {
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {
String zip = request.getParameter("zip");
WeatherService weatherService = new WeatherService();
PrintWriter out = response.getWriter();
try {

out.println(weatherService.retrieveForecast(zip));
} catch(Exception e) {

out.println("Error Retrieving Forecast: " + e.getMessage());
}
out.flush();
out.close();

}
}

In WeatherServlet, we instantiate an instance of the WeatherService class defined in simple-
weather. The zip code supplied in the request parameter is passed to the retrieveForecast()
method and the resulting test is printed to the response’s Writer.

Finally, to tie all of this together is the web.xml for simple-webapp in src/main/webapp/WEB-
INF. The servlet and servlet-mapping elements in the web.xml shown in simple-webapp
web.xml map the request path /weather to the WeatherServlet.

simple-webapp web.xml

<!DOCTYPE web-app PUBLIC
"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd" >

<web-app>
<display-name>Archetype Created Web Application</display-name>

Maven by Example 83 / 155

<servlet>
<servlet-name>simple</servlet-name>
<servlet-class>
org.sonatype.mavenbook.web.SimpleServlet

</servlet-class>
</servlet>
<servlet>

<servlet-name>weather</servlet-name>
<servlet-class>
org.sonatype.mavenbook.web.WeatherServlet

</servlet-class>
</servlet>
<servlet-mapping>

<servlet-name>simple</servlet-name>
<url-pattern>/simple</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>weather</servlet-name>
<url-pattern>/weather</url-pattern>

</servlet-mapping>
</web-app>

6.5 Building the Multimodule Project

With the simple-weather project containing all WAR file. To do this, you will want to compile and
install both projects in the appropriate order; since simple-webapp depends on simple-weather,
the simple-weather JAR needs to be created before the simple-webapp project can compile. To
do this, you will run mvn clean install command from the simple-parent project:

~/examples/ch-multi/simple-parent$ mvn clean install
[INFO] Scanning for projects...
[INFO] Reactor build order:
[INFO] Simple Parent Project
[INFO] simple-weather
[INFO] simple-webapp Maven Webapp
[INFO] ---
[INFO] Building simple-weather
[INFO]task-segment: [clean, install]
[INFO] ---
[...]
[INFO] [install:install]
[INFO] Installing simple-weather-1.0.jar to simple-weather-1.0.jar
[INFO] ---
[INFO] Building simple-webapp Maven Webapp

Maven by Example 84 / 155

[INFO]task-segment: [clean, install]
[INFO] ---
[...]
[INFO] [install:install]
[INFO] Installing simple-webapp.war to simple-webapp-1.0.war
[INFO]
[INFO] ---
[INFO] Reactor Summary:
[INFO] ---
[INFO] Simple Parent Project SUCCESS [3.041s]
[INFO] simple-weather SUCCESS [4.802s]
[INFO] simple-webapp Maven Webapp SUCCESS [3.065s]
[INFO] ---

When Maven is executed against a project with submodules, Maven first loads the parent POM and
locates all of the submodule POMs. Maven then puts all of these project POMs into something called the
Maven Reactor which analyzes the dependencies between modules. The Reactor takes care of ordering
components to ensure that interdependent modules are compiled and installed in the proper order.

Note
The Reactor preserves the order of modules as defined in the POM unless changes need to be made.
A helpful mental model for this is to picture that modules with dependencies on sibling projects are
"pushed down" the list until the dependency ordering is satisfied. On rare occasions, it may be handy
to rearrange the module order of your build — for example if you want a frequently unstable module
towards the beginning of the build.

Once the Reactor figures out the order in which projects must be built, Maven then executes the speci-
fied goals for every module in the multi-module build. In this example, you can see that Maven builds
simple-weather before simple-webapp, effectively executing mvn clean install for each
submodule.

Note
When you run Maven from the command line you’ll frequently want to specify the clean lifecycle
phase before any other lifecycle stages. When you specify clean, you make sure that Maven is going
to remove old output before it compiles and packages an application. Running clean isn’t necessary,
but it is a useful precaution to make sure that you are performing a "clean build".

Maven by Example 85 / 155

6.6 Running the Web Application

Once the multi-module project has been installed with mvn install, you can run the web application
with mvn jetty:run.

~/examples/ch-multi/simple-parent/simple-webapp $ mvn jetty:run
[INFO] ---
[INFO] Building simple-webapp Maven Webapp
[INFO]task-segment: [jetty:run]
[INFO] ---
[...]
[INFO] [jetty:run]
[INFO] Configuring Jetty for project: simple-webapp Maven Webapp
[...]
[INFO] Webapp directory = ~/examples/ch-multi/simple-parent/\
simple-webapp/src/main/webapp
[INFO] Starting jetty 6.1.6rc1 ...
2007-11-18 1:58:26.980::INFO: jetty-6.1.6rc1
2007-11-18 1:58:26.125::INFO: No Transaction manager found
2007-11-18 1:58:27.633::INFO: Started SelectChannelConnector@0.0.0.0:8080
[INFO] Started Jetty Server

Once Jetty has started, load http://localhost:8080/simple-webapp/weather?zip=01201 in a browser and
you should see the formatted weather output.

http://localhost:8080/simple-webapp/weather?zip=01201

Maven by Example 86 / 155

Chapter 7

Multi-Module Enterprise Project

7.1 Introduction

In this chapter, we create a multi-module project that evolves the examples from Chapter 6 and Chapter 5
into a project that uses the Spring Framework and Hibernate to create both a simple web application
and a command-line utility to read data from the Yahoo Weather feed. The simple-weather code
developed in Chapter 4 will be combined with the simple-webapp project defined in Chapter 5. In the
process of creating this multi-module project, we’ll explore Maven and discuss the different ways it can
be used to create modular projects that encourage reuse.

7.1.1 Downloading this Chapter’s Example

The multi-module project developed in this example consists of modified versions of the projects devel-
oped in Chapter 4 and Chapter 5, and we are not using the Maven Archetype plug-in to generate this
multi-module project. We strongly recommend downloading a copy of the example code to use as a sup-
plemental reference while reading the content in this chapter. Without the examples, you won’t be able to
recreate this chapter’s example code. This chapter’s example project may be downloaded with the book’s
example code at:

http://books.sonatype.com/mvnex-book/mvnex-examples.zip

Maven by Example 87 / 155

Unzip this archive in any directory, and then go to the ch-multi-spring directory. There you will
see a directory named simple-parent that contains the multi-module Maven project developed in this
chapter. In the simple-parent/ project directory you will see a pom.xml and the five submodule di-
rectories simple-model/, simple-persist/, simple-command/, simple-weather/ and
simple-webapp/.

7.1.2 Multi-Module Enterprise Project

Presenting the complexity of a massive Enterprise-level project far exceeds the scope of this book. Such
projects are characterized by multiple databases, integration with external systems, and subprojects which
may be divided by departments. These projects usually span thousands of lines of code, and involve the
effort of tens or hundreds of software developers. While such a complete example is outside the scope of
this book, we can provide you with a sample project that suggests the complexity of a larger Enterprise
application. In the conclusion we suggest some possibilities for modularity beyond that presented in this
chapter.

In this chapter, we’re going to look at a multi-module Maven project that will produce two applications:
a command-line query tool for the Yahoo Weather feed and a web application which queries the Yahoo
Weather feed. Both of these applications will store the results of queries in an embedded database. Each
will allow the user to retrieve historical weather data from this embedded database. Both applications
will reuse application logic and share a persistence library. This chapter’s example builds upon the Yahoo
Weather parsing code introduced in Chapter 4. This project is divided into five submodules shown in
Figure 7.1.

Maven by Example 88 / 155

Figure 7.1: Multi-Module Enterprise Application Module Relationships

In Figure 7.1, you can see that there are five submodules of simple-parent. They are:

simple-model
This module defines a simple object model which models the data returned from the Yahoo Weather
feed. This object model contains the Weather, Condition, Atmosphere, Location, and
Wind objects. When our application parses the Yahoo Weather feed, the parsers defined in sim
ple-weather will parse the XML and create Weather objects which are then used by the
application. This project contains model objects annotated with Hibernate 3 Annotations. These
annotations are used by the logic in simple-persist to map each model object to a correspond-
ing table in a relational database.

simple-weather
This module contains all of the logic required to retrieve data from the Yahoo Weather feed and
parse the resulting XML. The XML returned from this feed is converted into the model objects
defined in simple-model. simple-weather has a dependency on simple-model. sim
ple-weather defines a WeatherService object which is referenced by both the simple-
command and simple-webapp projects.

simple-persist
This module contains some Data Access Objects (DAO) which are configured to store Weather

Maven by Example 89 / 155

objects in an embedded database. Both of the applications defined in this multi-module project will
use the DAOs defined in simple-persist to store data in an embedded database. The DAOs
defined in this project understand and return the model objects defined in simple-model. sim
ple-persist has a direct dependency on simple-model and it depends upon the Hibernate
Annotations present on the model objects.

simple-webapp
The web application project contains two Spring MVC Controller implementations which use the
WeatherService defined in simple-weather and the DAOs defined in simple-pers
ist. simple-webapp has a direct dependency on simple-weather and simple-pers
ist; it has a transitive dependency on simple-model.

simple-command
This module contains a simple command-line tool which can be used to query the Yahoo Weather
feed. This project contains a class with a static main() method and interacts with the Weathe
rService defined in simple-weather and the DAOs defined in simple-persist. sim
ple-command has a direct dependency on simple-weather and simple-persist; it has
a transitive dependency on simple-model.

This chapter contains a contrived example simple enough to introduce in a book, yet complex enough to
justify a set of five submodules. Our contrived example has a model project with five classes, a persistence
library with two service classes, and a weather parsing library with five or six classes, but a real-world
system might have a model project with a hundred objects, several persistence libraries, and service
libraries spanning multiple departments. Although we’ve tried to make sure that the code contained in
this example is straightforward enough to comprehend in a single sitting, we’ve also gone out of our way
to build a modular project. You might be tempted to look at the examples in this chapter and walk away
with the idea that Maven encourages too much complexity given that our model project has only five
classes. Although using Maven does suggest a certain level of modularity, do realize that we’ve gone
out of our way to complicate our simple example projects for the purpose of demonstrating Maven’s
multi-module features.

7.1.3 Technology Used in this Example

This chapter’s example involves some technology which, while popular, is not directly related to Maven.
These technologies are the Spring Framework and Hibernate. The Spring Framework is an Inversion
of Control (IoC) container and a set of frameworks that aim to simplify interaction with various J2EE
libraries. Using the Spring Framework as a foundational framework for application development gives
you access to a number of helpful abstractions that can take much of the meddlesome busywork out of
dealing with persistence frameworks like Hibernate or iBatis or enterprise APIs like JDBC, JNDI, and
JMS. The Spring Framework has grown in popularity over the past few years as a replacement for the
heavy weight enterprise standards coming out of Sun Microsystems. Hibernate is a widely used Object-
Relational Mapping framework which allows you to interact with a relational database as if it were a

Maven by Example 90 / 155

collection of Java objects. This example focuses on building a simple web application and a command-
line application that use the Spring Framework to expose a set of reusable components to applications and
which also use Hibernate to persist weather data in an embedded database.

We’ve decided to include references to these frameworks to demonstrate how one would construct projects
using these technologies when using Maven. Although we make brief efforts to introduce these technolo-
gies throughout this chapter, we will not go out of our way to fully explain these technologies. For more in-
formation about the Spring Framework, please see the project’s web site at http://www.springsource.org/-
documentation. For more information about Hibernate and Hibernate Annotations, please see the project’s
web site at http://www.hibernate.org. This chapter uses Hyper Structured Query Language Database
(HSQLDB) as an embedded database; for more information about this database, see the project’s web site
at http://hsqldb.org.

7.2 The Simple Parent Project

This simple-parent project has a pom.xml that references five submodules: simple-command,
simple-model, simple-weather, simple-persist, and simple-webapp. The top-level
pom.xml is shown in simple-parent Project POM.

simple-parent Project POM

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>org.sonatype.mavenbook.multispring</groupId>
<artifactId>simple-parent</artifactId>
<packaging>pom</packaging>
<version>1.0</version>
<name>Multi-Spring Chapter Simple Parent Project</name>

<modules>
<module>simple-command</module>
<module>simple-model</module>
<module>simple-weather</module>
<module>simple-persist</module>
<module>simple-webapp</module>

</modules>

<build>
<pluginManagement>

http://www.springframework.org/
http://www.springframework.org/
http://www.hibernate.org
http://hsqldb.org/

Maven by Example 91 / 155

<plugins>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>

<source>1.5</source>
<target>1.5</target>

</configuration>
</plugin>

</plugins>
</pluginManagement>

</build>

<dependencies>
<dependency>

<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>
</dependencies>

</project>

Note
If you are already familiar with Maven POMs, you might notice that this top-level POM does not de-
fine a dependencyManagement element. The dependencyManagement element allows you to define
dependency versions in a single, top-level POM, and it is introduced in Chapter 8.

Note the similarities of this parent POM to the parent POM defined in simple-parent Project POM. The
only real difference between these two POMs is the list of submodules. Where that example only listed
two submodules, this parent POM lists five submodules. The next few sections explore each of these five
submodules in some detail. Because our example uses Java annotations, we’ve configured the compiler
to target the Java 5 JVM.

7.3 The Simple Model Module

The first thing most enterprise projects need is an object model. An object model captures the core
set of domain objects in any system. A banking system might have an object model which consists of
Account, Customer, and Transaction objects, or a system to capture and communicate sports

Maven by Example 92 / 155

scores might have a Team and a Game object. Whatever it is, there’s a good chance that you’ve modeled
the concepts in your system in an object model. It is a common practice in Maven projects to separate
this project into a separate project which is widely referenced. In this system we are capturing each
query to the Yahoo Weather feed with a Weather object which references four other objects. Wind
direction, chill, and speed are stored in a Wind object. Location data including the zip code, city, region,
and country are stored in a Location class. Atmospheric conditions such as the humidity, maximum
visibility, barometric pressure, and whether the pressure is rising or falling are stored in an Atmosphere
class. A textual description of conditions, the temperature, and the date of the observation is stored in a
Condition class.

Figure 7.2: Simple Object Model for Weather Data

The pom.xml file for this simple object model contains one dependency that bears some explanation.
Our object model is annotated with Hibernate Annotations. We use these annotations to map the model
objects in this model to tables in a relational database. The dependency is org.hibernate:hibern
ate-annotations:3.3.0.ga. Take a look at the pom.xml shown in simple-model pom.xml, and
then look at the next few examples for some illustrations of these annotations.

simple-model pom.xml

Maven by Example 93 / 155

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>

<groupId>org.sonatype.mavenbook.multispring</groupId>
<artifactId>simple-parent</artifactId>
<version>1.0</version>

</parent>
<artifactId>simple-model</artifactId>
<packaging>jar</packaging>

<name>Simple Object Model</name>

<dependencies>
<dependency>

<groupId>org.hibernate</groupId>
<artifactId>hibernate-annotations</artifactId>
<version>3.3.0.ga</version>

</dependency>
<dependency>

<groupId>org.hibernate</groupId>
<artifactId>hibernate-commons-annotations</artifactId>
<version>3.3.0.ga</version>

</dependency>
</dependencies>

</project>

In src/main/java/org/sonatype/mavenbook/weather/model, we have Weather.java,
which contains the annotated Weather model object. The Weather object is a simple Java bean. This
means that we have private member variables like id, location, condition, wind, atmosphere,
and date exposed with public getter and setter methods that adhere to the following pattern: if a property
is named name, there will be a public no-arg getter method named getName(), and there will be a one-
argument setter named setName(String name). Although we show the getter and setter methods
for the id property, we’ve omitted most of the getters and setters for most of the other properties to save
a few trees. See Annotated Weather Model Object.

Annotated Weather Model Object

package org.sonatype.mavenbook.weather.model;

import javax.persistence.*;

import java.util.Date;

@Entity

Maven by Example 94 / 155

@NamedQueries({
@NamedQuery(name="Weather.byLocation",

query="from Weather w where w.location = :location")
})
public class Weather {

@Id
@GeneratedValue(strategy=GenerationType.IDENTITY)
private Integer id;

@ManyToOne(cascade=CascadeType.ALL)
private Location location;

@OneToOne(mappedBy="weather",cascade=CascadeType.ALL)
private Condition condition;

@OneToOne(mappedBy="weather",cascade=CascadeType.ALL)
private Wind wind;

@OneToOne(mappedBy="weather",cascade=CascadeType.ALL)
private Atmosphere atmosphere;

private Date date;

public Weather() {}

public Integer getId() { return id; }
public void setId(Integer id) { this.id = id; }

// All getter and setter methods omitted...
}

In the Weather class, we are using Hibernate annotations to provide guidance to the simple-pers
ist project. These annotations are used by Hibernate to map an object to a table in a relational database.
Although a full explanation of Hibernate annotations is beyond the scope of this chapter, here is a brief
explanation for the curious. The @Entity annotation marks this class as a persistent entity. We’ve
omitted the @Table annotation on this class, so Hibernate is going to use the name of the class as the
name of the table to map Weather to. The @NamedQueries annotation defines a query that is used
by the WeatherDAO in simple-persist. The query language in the @NamedQuery annotation is
written in something called Hibernate Query Language (HQL). Each member variable is annotated with
annotations that define the type of column and any relationships implied by that column:

Id
The id property is annotated with @Id. This marks the id property as the property that contains
the primary key in a database table. The @GeneratedValue controls how new primary key

Maven by Example 95 / 155

values are generated. In the case of id, we’re using the IDENTITY GenerationType, which
will use the underlying database’s identity generation facilities.

Location
Each Weather object instance corresponds to a Location object. A Location object repre-
sents a zip code, and the @ManyToOne makes sure that Weather objects that point to the same
Location object reference the same instance. The cascade attribute of the @ManyToOne
makes sure that we persist a Location object every time we persist a Weather object.

Condition, Wind, Atmosphere
Each of these objects is mapped as a @OneToOne with the CascadeType of ALL. This means
that every time we save a Weather object, we’ll be inserting a row into the Weather table, the
Condition table, the Wind table, and the Atmosphere table.

Date
Date is not annotated. This means that Hibernate is going to use all of the column defaults to
define this mapping. The column name is going to be date, and the column type is going to be the
appropriate time to match the Date object.

Note
If you have a property you wish to omit from a table mapping, you would annotate that property with @
Transient.

Next, take a look at one of the secondary model objects, Condition, shown in simple-model’s Con-
dition Model Object.. This class also resides in src/main/java/org/sonatype/mavenbook/
weather/model.

simple-model’s Condition Model Object.

package org.sonatype.mavenbook.weather.model;

import javax.persistence.*;

@Entity
public class Condition {

@Id
@GeneratedValue(strategy=GenerationType.IDENTITY)
private Integer id;

private String text;
private String code;
private String temp;
private String date;

Maven by Example 96 / 155

@OneToOne(cascade=CascadeType.ALL)
@JoinColumn(name="weather_id", nullable=false)
private Weather weather;

public Condition() {}

public Integer getId() { return id; }
public void setId(Integer id) { this.id = id; }

// All getter and setter methods omitted...
}

The Condition class resembles the Weather class. It is annotated as an @Entity, and it has similar
annotations on the id property. The text, code, temp, and date properties are all left with the
default column settings, and the weather property is annotated with a @OneToOne annotation and
another annotation that references the associated Weather object with a foreign key column named
weather_id.

7.4 The Simple Weather Module

The next module we’re going to examine could be considered something of a “service.” The Simple
Weather module is the module that contains all of the logic necessary to retrieve and parse the data from
the Yahoo Weather RSS feed. Although Simple Weather contains three Java classes and one JUnit test,
it is going to present a single component, WeatherService, to both the Simple Web Application and
the Simple Command-Line Utility. Very often an enterprise project will contain several API modules
that contain critical business logic or logic that interacts with external systems. A banking system might
have a module that retrieves and parses data from a third-party data provider, and a system to display
sports scores might interact with an XML feed that presents real-time scores for basketball or soccer. In
simple-weather Module POM, this module encapsulates all of the network activity and XML parsing that
is involved in the interaction with Yahoo Weather. Other modules can depend on this module and simply
call out to the retrieveForecast() method on WeatherService, which takes a zip code as an
argument and which returns a Weather object.

simple-weather Module POM

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>

Maven by Example 97 / 155

<groupId>org.sonatype.mavenbook.multispring</groupId>
<artifactId>simple-parent</artifactId>
<version>1.0</version>

</parent>
<artifactId>simple-weather</artifactId>
<packaging>jar</packaging>

<name>Simple Weather API</name>

<dependencies>
<dependency>

<groupId>org.sonatype.mavenbook.multispring</groupId>
<artifactId>simple-model</artifactId>
<version>1.0</version>

</dependency>
<dependency>

<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.14</version>

</dependency>
<dependency>

<groupId>dom4j</groupId>
<artifactId>dom4j</artifactId>
<version>1.6.1</version>

</dependency>
<dependency>

<groupId>jaxen</groupId>
<artifactId>jaxen</artifactId>
<version>1.1.1</version>

</dependency>
<dependency>

<groupId>org.apache.commons</groupId>
<artifactId>commons-io</artifactId>
<version>1.3.2</version>
<scope>test</scope>

</dependency>
</dependencies>

</project>

The simple-weather POM extends the simple-parent POM, sets the packaging to jar, and
then adds the following dependencies:

org.sonatype.mavenbook.multispring:simple-model:1.0
simple-weather parses the Yahoo Weather RSS feed into a Weather object. It has a direct
dependency on simple-model.

Maven by Example 98 / 155

log4j:log4j:1.2.14
simple-weather uses the Log4J library to print log messages.

dom4j:dom4j:1.6.1 and jaxen:jaxen:1.1.1
Both of these dependencies are used to parse the XML returned from Yahoo Weather.

org.apache.commons:commons-io:1.3.2 (scope=test)
This test-scoped dependency is used by the YahooParserTest.

Next is the WeatherService class, shown in WeatherService Class. This class is going to look very
similar to the WeatherService class from The WeatherService Class. Although the WeatherSe
rvice is the same, there are some subtle differences in this chapter’s example. This version’s retr
ieveForecast() method returns a Weather object, and the formatting is going to be left to the
applications that call WeatherService. The other major change is that the YahooRetriever and
YahooParser are both bean properties of the WeatherService bean.

WeatherService Class

package org.sonatype.mavenbook.weather;

import java.io.InputStream;

import org.sonatype.mavenbook.weather.model.Weather;

public class WeatherService {

private YahooRetriever yahooRetriever;
private YahooParser yahooParser;

public WeatherService() {
}

public Weather retrieveForecast(String zip) throws Exception {
// Retrieve Data
InputStream dataIn = yahooRetriever.retrieve(zip);

// Parse DataS
Weather weather = yahooParser.parse(zip, dataIn);

return weather;
}

public YahooRetriever getYahooRetriever() {
return yahooRetriever;

}

public void setYahooRetriever(YahooRetriever yahooRetriever) {

Maven by Example 99 / 155

this.yahooRetriever = yahooRetriever;
}

public YahooParser getYahooParser() {
return yahooParser;

}

public void setYahooParser(YahooParser yahooParser) {
this.yahooParser = yahooParser;

}

}

Finally, in this project we have an XML file that is used by the Spring Framework to create something
called an ApplicationContext. First, some explanation: both of our applications, the web ap-
plication and the command-line utility, need to interact with the WeatherService class, and they
both do so by retrieving an instance of this class from a Spring ApplicationContext using the
name weatherService. Our web application uses a Spring MVC controller that is associated with
an instance of WeatherService, and our command-line utility loads the WeatherService from
an ApplicationContext in a static main() function. To encourage reuse, we’ve included an
applicationContext-weather.xml file in src/main/resources, which is available on the
classpath. Modules that depend on the simple-weather module can load this application context us-
ing the ClasspathXmlApplicationContext in the Spring Framework. They can then reference
a named instance of the WeatherService named weatherService.

Spring Application Context for the simple-weather Module

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd"

default-lazy-init="true">

<bean id="weatherService"
class="org.sonatype.mavenbook.weather.WeatherService">

<property name="yahooRetriever" ref="yahooRetriever"/>
<property name="yahooParser" ref="yahooParser"/>

</bean>

<bean id="yahooRetriever"
class="org.sonatype.mavenbook.weather.YahooRetriever"/>

<bean id="yahooParser"
class="org.sonatype.mavenbook.weather.YahooParser"/>

Maven by Example 100 / 155

</beans>

This document defines three beans: yahooParser, yahooRetriever, and weatherService.
The weatherService bean is an instance of WeatherService, and this XML document populates
the yahooParser and yahooRetriever properties with references to the named instances of the
corresponding classes. Think of this applicationContext-weather.xml file as defining the
architecture of a subsystem in this multi-module project. Projects like simple-webapp and simple-
command can reference this context and retrieve an instance of WeatherService which already has
relationships to instances of YahooRetriever and YahooParser.

7.5 The Simple Persist Module

This module defines two very simple Data Access Objects (DAOs). A DAO is an object that provides an
interface for persistence operations. In an application that makes use of an Object-Relational Mapping
(ORM) framework such as Hibernate, DAOs are usually defined around objects. In this project, we are
defining two DAO objects: WeatherDAO and LocationDAO. The WeatherDAO class allows us to
save a Weather object to a database and retrieve a Weather object by id, and to retrieve Weather
objects that match a specific Location. The LocationDAO has a method that allows us to retrieve a
Location object by zip code. First, let’s take a look at the simple-persist POM in simple-persist
POM.

simple-persist POM

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>

<groupId>org.sonatype.mavenbook.multispring</groupId>
<artifactId>simple-parent</artifactId>
<version>1.0</version>

</parent>
<artifactId>simple-persist</artifactId>
<packaging>jar</packaging>

<name>Simple Persistence API</name>

<dependencies>
<dependency>

<groupId>org.sonatype.mavenbook.multispring</groupId>
<artifactId>simple-model</artifactId>

Maven by Example 101 / 155

<version>1.0</version>
</dependency>
<dependency>

<groupId>org.hibernate</groupId>
<artifactId>hibernate</artifactId>
<version>3.2.5.ga</version>
<exclusions>

<exclusion>
<groupId>javax.transaction</groupId>
<artifactId>jta</artifactId>

</exclusion>
</exclusions>

</dependency>
<dependency>

<groupId>org.hibernate</groupId>
<artifactId>hibernate-annotations</artifactId>
<version>3.3.0.ga</version>

</dependency>
<dependency>

<groupId>org.hibernate</groupId>
<artifactId>hibernate-commons-annotations</artifactId>
<version>3.3.0.ga</version>

</dependency>
<dependency>

<groupId>javax.servlet</groupId>
<artifactId>servlet-api</artifactId>
<version>2.4</version>
<scope>provided</scope>

</dependency>
<dependency>

<groupId>org.springframework</groupId>
<artifactId>spring</artifactId>
<version>2.0.7</version>

</dependency>
</dependencies>

</project>

This POM file references simple-parent as a parent POM, and it defines a few dependencies. The
dependencies listed in simple-persist’s POM are:

org.sonatype.mavenbook.multispring:simple-model:1.0
Just like the simple-weather module, this persistence module references the core model ob-
jects defined in simple-model.

org.hibernate:hibernate:3.2.5.ga
We define a dependency on Hibernate version 3.2.5.ga, but notice that we’re excluding a depen-

Maven by Example 102 / 155

dency of Hibernate. We’re doing this because the javax.transaction:jta dependency is
not available in the public Maven repository. This dependency happens to be one of those Sun
dependencies that has not yet made it into the free central Maven repository. To avoid an annoying
message telling us to go download these nonfree dependencies, we simply exclude this dependency
from Hibernate.

javax.servlet:servlet-api:2.4
Since this project contains a Servlet, we need to include the Servlet API version 2.4.

org.springframework:spring:2.0.7
This includes the entire Spring Framework as a dependency. It is generally a good practice to
depend on only the components of Spring you happen to be using. The Spring Framework project
has been nice enough to create focused artifacts such as spring-hibernate3.

Why depend on Spring? When it comes to Hibernate integration, Spring allows us to leverage helper
classes such as HibernateDaoSupport. For an example of what is possible with the help of Hib
ernateDaoSupport, take a look at the code for the WeatherDAO in simple-persist’s WeatherDAO
Class.

simple-persist’s WeatherDAO Class

package org.sonatype.mavenbook.weather.persist;

import java.util.ArrayList;
import java.util.List;

import org.hibernate.Query;
import org.hibernate.Session;
import org.springframework.orm.hibernate3.HibernateCallback;
import org.springframework.orm.hibernate3.support.HibernateDaoSupport;

import org.sonatype.mavenbook.weather.model.Location;
import org.sonatype.mavenbook.weather.model.Weather;

public class WeatherDAO extends HibernateDaoSupport { v1
public WeatherDAO() {}

public void save(Weather weather) { v2
getHibernateTemplate().save(weather);

}

public Weather load(Integer id) { v3
return (Weather) getHibernateTemplate().load(Weather.class, id);

}

@SuppressWarnings("unchecked")

Maven by Example 103 / 155

public List<Weather> recentForLocation(final Location location) {
return (List<Weather>) getHibernateTemplate().execute(

new HibernateCallback() { v4
public Object doInHibernate(Session session) {

Query query =
getSession().getNamedQuery("Weather.byLocation");

query.setParameter("location", location);
return new ArrayList<Weather>(query.list());

}
});

}
}

That’s it. No really, you are done writing a class that can insert new rows, select by primary key, and find
all rows in Weather that join to an id in the Location table. Clearly, we can’t stop this book and insert
the five hundred pages it would take to get you up to speed on the intricacies of Hibernate, but we can do
some very quick explanation:

v1 This class extends HibernateDaoSupport. What this means is that the class is going to
be associated with a Hibernate SessionFactory which it is going to use to create Hibernate
Session objects. In Hibernate, every operation goes through a Session object, a Session
mediates access to the underlying database and takes care of managing the connection to the JDBC
DataSource. Extending HibernateDaoSupport also means that we can access the Hibe
rnateTemplate using getHibernateTemplate(). For an example of what can be done
with the HibernateTemplate. . .v2 The save() method takes an instance of Weather and calls the save() method on a Hibern
ateTemplate. The HibernateTemplate simplifies calls to common Hibernate operations
and converts any database specific exceptions to runtime exceptions. Here we call out to sav
e() which inserts a new record into the Weather table. Alternatives to save() are updat
e() which updates an existing row, or saveOrUpdate() which would either save or update
depending on the presence of a non-null id property in Weather.v3 The load() method, once again, is a one-liner that just calls a method on an instance of Hibe
rnateTemplate. load() on HibernateTemplate takes a Class object and a Serial
izable object. In this case, the Serializable corresponds to the id value of the Weather
object to load.v4 This last method recentForLocation() calls out to a NamedQuery defined in the Weat
her model object. If you can think back that far, the Weather model object defined a named
query "Weather.byLocation" with a query of "from Weather w where w.locati
on =:location". We’re loading this NamedQuery using a reference to a Hibernate Sess
ion object inside a HibernateCallback which is executed by the execute() method on
HibernateTemplate. You can see in this method that we’re populating the named parameter
location with the parameter passed in to the recentForLocation() method.

Maven by Example 104 / 155

Now is a good time for some clarification. HibernateDaoSupport and HibernateTemplate
are classes from the Spring Framework. They were created by the Spring Framework to make writ-
ing Hibernate DAO objects painless. To support this DAO, we’ll need to do some configuration in
the simple-persist Spring ApplicationContext definition. The XML document shown in
Spring Application Context for simple-persist is stored in src/main/resources in a file named
applicationContext-persist.xml.

Spring Application Context for simple-persist

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd"

default-lazy-init="true">

<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.annotation. ←↩

AnnotationSessionFactoryBean">
<property name="annotatedClasses">
<list>
<value>org.sonatype.mavenbook.weather.model.Atmosphere</value>
<value>org.sonatype.mavenbook.weather.model.Condition</value>
<value>org.sonatype.mavenbook.weather.model.Location</value>
<value>org.sonatype.mavenbook.weather.model.Weather</value>
<value>org.sonatype.mavenbook.weather.model.Wind</value>

</list>
</property>
<property name="hibernateProperties">
<props>
<prop key="hibernate.show_sql">false</prop>
<prop key="hibernate.format_sql">true</prop>
<prop key="hibernate.transaction.factory_class">

org.hibernate.transaction.JDBCTransactionFactory
</prop>
<prop key="hibernate.dialect">

org.hibernate.dialect.HSQLDialect
</prop>
<prop key="hibernate.connection.pool_size">0</prop>
<prop key="hibernate.connection.driver_class">

org.hsqldb.jdbcDriver
</prop>
<prop key="hibernate.connection.url">

jdbc:hsqldb:data/weather;shutdown=true
</prop>
<prop key="hibernate.connection.username">sa</prop>
<prop key="hibernate.connection.password"></prop>
<prop key="hibernate.connection.autocommit">true</prop>
<prop key="hibernate.jdbc.batch_size">0</prop>

Maven by Example 105 / 155

</props>
</property>

</bean>

<bean id="locationDAO"
class="org.sonatype.mavenbook.weather.persist.LocationDAO">

<property name="sessionFactory" ref="sessionFactory"/>
</bean>

<bean id="weatherDAO"
class="org.sonatype.mavenbook.weather.persist.WeatherDAO">

<property name="sessionFactory" ref="sessionFactory"/>
</bean>

</beans>

In this application context, we’re accomplishing a few things. The sessionFactory bean is the bean
from which the DAOs retrieve Hibernate Session objects. This bean is an instance of Annotatio
nSessionFactoryBean and is supplied with a list of annotatedClasses. Note that the list of
annotated classes is the list of classes defined in our simple-model module. Next, the sessionFa
ctory is configured with a set of Hibernate configuration properties (hibernateProperties). In
this example, our Hibernate properties define a number of settings:

hibernate.dialect
This setting controls how SQL is to be generated for our database. Since we are using the HSQLDB
database, our database dialect is set to org.hibernate.dialect.HSQLDialect. Hibernate
has dialects for all major databases such as Oracle, MySQL, Postgres, and SQL Server.

hibernate.connection.*
In this example, we’re configuring the JDBC connection properties from the Spring configuration.
Our applications are configured to run against a HSQLDB in the ./data/weather directory.
In a real enterprise application, it is more likely you would use something like JNDI to externalize
database configuration from your application’s code.

Lastly, in this bean definition file, both of the simple-persist DAO objects are created and given
a reference to the sessionFactory bean just defined. Just like the Spring application context in
simple-weather, this applicationContext-persist.xml file defines the architecture of a
submodule in a larger enterprise design. If you were working with a larger collection of persistence
classes, you might find it useful to capture them in an application context which is separate from your
application.

There’s one last piece of the puzzle in simple-persist. Later in this chapter, we’re going to use
hibernate.cfg.xml in src/main/resources. The purpose of this file (which duplicates some
of the configuration in applicationContext-persist.xml) is to allow us to leverage the Maven

Maven by Example 106 / 155

Hibernate3 plugin to generate Data Definition Language (DDL) from nothing more than our annotations.
See simple-persist hibernate.cfg.xml.

simple-persist hibernate.cfg.xml

<!DOCTYPE hibernate-configuration PUBLIC
"-//Hibernate/Hibernate Configuration DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>
<session-factory>

<!-- SQL dialect -->
<property name="dialect">
org.hibernate.dialect.HSQLDialect

</property>

<!-- Database connection settings -->
<property name="connection.driver_class">
org.hsqldb.jdbcDriver

</property>
<property name="connection.url">jdbc:hsqldb:data/weather</property>
<property name="connection.username">sa</property>
<property name="connection.password"></property>
<property name="connection.shutdown">true</property>

<!-- JDBC connection pool (use the built-in one) -->
<property name="connection.pool_size">1</property>

<!-- Enable Hibernate’s automatic session context management -->
<property name="current_session_context_class">thread</property>

<!-- Disable the second-level cache -->
<property name="cache.provider_class">

org.hibernate.cache.NoCacheProvider
</property>

<!-- Echo all executed SQL to stdout -->
<property name="show_sql">true</property>

<!-- disable batching so HSQLDB will propagate errors correctly. -->
<property name="jdbc.batch_size">0</property>

<!-- List all the mapping documents we’re using -->
<mapping class="org.sonatype.mavenbook.weather.model.Atmosphere"/>
<mapping class="org.sonatype.mavenbook.weather.model.Condition"/>
<mapping class="org.sonatype.mavenbook.weather.model.Location"/>
<mapping class="org.sonatype.mavenbook.weather.model.Weather"/>
<mapping class="org.sonatype.mavenbook.weather.model.Wind"/>

Maven by Example 107 / 155

</session-factory>
</hibernate-configuration>

The contents of Spring Application Context for simple-persist and simple-parent Project POM are re-
dundant. While the Spring Application Context XML is going to be used by the web application and
the command-line application, the hibernate.cfg.xml exists only to support the Maven Hibernate3
plugin. Later in this chapter, we’ll see how to use this hibernate.cfg.xml and the Maven Hiber-
nate3 plugin to generate a database schema based on the annotated object model defined in simple-
model. This hibernate.cfg.xml file is the file that will configure the JDBC connection properties
and enumerate the list of annotated model classes for the Maven Hibernate3 plugin.

7.6 The Simple Web Application Module

The web application is defined in a simple-webapp project. This simple web application project is
going to define two Spring MVC Controllers: WeatherController and simple-weather and the
applicationContext-persist.xml file in simple-persist. The component architecture of
this simple web application is shown in Figure 7.3.

Maven by Example 108 / 155

Figure 7.3: Spring MVC Controllers Referencing Components in simple-weather and simple-persist.

The POM for simple-webapp is shown in POM for simple-webapp.

POM for simple-webapp

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>

<groupId>org.sonatype.mavenbook.multispring</groupId>
<artifactId>simple-parent</artifactId>
<version>1.0</version>

</parent>

<artifactId>simple-webapp</artifactId>
<packaging>war</packaging>

Maven by Example 109 / 155

<name>Simple Web Application</name>
<dependencies>

<dependency> v1
<groupId>javax.servlet</groupId>
<artifactId>servlet-api</artifactId>
<version>2.4</version>
<scope>provided</scope>

</dependency>
<dependency>
<groupId>org.sonatype.mavenbook.multispring</groupId>
<artifactId>simple-weather</artifactId>
<version>1.0</version>

</dependency>
<dependency>
<groupId>org.sonatype.mavenbook.multispring</groupId>
<artifactId>simple-persist</artifactId>
<version>1.0</version>

</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring</artifactId>
<version>2.0.7</version>

</dependency>
<dependency>
<groupId>org.apache.velocity</groupId>
<artifactId>velocity</artifactId>
<version>1.5</version>

</dependency>
</dependencies>
<build>

<finalName>simple-webapp</finalName>
<plugins>
<plugin> v2
<groupId>org.mortbay.jetty</groupId>
<artifactId>maven-jetty-plugin</artifactId>
<dependencies> v3

<dependency>
<groupId>hsqldb</groupId>
<artifactId>hsqldb</artifactId>
<version>1.8.0.7</version>

</dependency>
</dependencies>

</plugin>
<plugin>
<groupId>org.codehaus.mojo</groupId> v4
<artifactId>hibernate3-maven-plugin</artifactId>
<version>2.0</version>
<configuration>

<components>

Maven by Example 110 / 155

<component>
<name>hbm2ddl</name>
<implementation>annotationconfiguration</implementation> v5

</component>
</components>
</configuration>
<dependencies>

<dependency>
<groupId>hsqldb</groupId>
<artifactId>hsqldb</artifactId>
<version>1.8.0.7</version>

</dependency>
</dependencies>

</plugin>
</plugins>

</build>
</project>

As this book progresses and the examples become more and more substantial, you’ll notice that the pom.
xml begins to take on some weight. In this POM, we’re configuring four dependencies and two plugins.
Let’s go through this POM in detail and dwell on some of the important configuration points:

v1 This simple-webapp project defines four dependencies: the Servlet 2.4 specification, the simple-
weather service library, the simple-persist persistence library, and the entire Spring Framework
2.0.7.v2 The Maven Jetty plugin couldn’t be easier to add to this project; we simply add a plugin element
that references the appropriate groupId and artifactId. The fact that this plugin is so trivial
to configure means that the plugin developers did a good job of providing adequate defaults that
don’t need to be overridden in most cases. If you did need to override the configuration of the Jetty
plugin, you would do so by providing a configuration element.v3 In our build configuration, we’re going to be configuring the Maven Hibernate3 Plugin to hit
an embedded HSQLDB instance. For the Maven Hibernate 3 plugin to successfully connect to
this database using JDBC, the plugin will need to reference the HSQLDB JDBC driver on the
classpath. To make a dependency available for a plugin, we add a dependency declaration right
inside the plugin declaration. In this case, we’re referencing hsqldb:hsqldb:1.8.0.7. The Hibernate
plugin also needs the JDBC driver to create the database, so we have also added this dependency
to its configuration.v4 The Maven Hibernate plugin is when this POM starts to get interesting. In the next section, we’re
going to run the hbm2ddl goal to generate a HSQLDB database. In this pom.xml, we’re includ-
ing a reference to version 2.0 of the hibernate3-maven-plugin hosted by the Codehaus
Mojo plugin.

Maven by Example 111 / 155

v5 The Maven Hibernate3 plugin has different ways to obtain Hibernate mapping information that are
appropriate for different usage scenarios of the Hibernate3 plugin. If you were using Hibernate
Mapping XML (.hbm.xml) files, and you wanted to generate model classes using the hbm2
java goal, you would set your implementation to configuration. If you were using the
Hibernate3 plugin to reverse engineer a database to produce .hbm.xml files and model classes
from an existing database, you would use an implementation of jdbcconfiguration. In this
case, we’re simply using an existing annotated object model to generate a database. In other words,
we have our Hibernate mapping, but we don’t yet have a database. In this usage scenario, the
appropriate implementation value is annotationconfiguration. The Maven Hibernate3
plugin is discussed in more detail in the later section Section 7.7.

Next, we turn our attention to the two Spring MVC controllers that will handle all of the requests. Both
of these controllers reference the beans defined in simple-weather and simple-persist.

simple-webapp WeatherController
package org.sonatype.mavenbook.web;

import org.sonatype.mavenbook.weather.model.Weather;
import org.sonatype.mavenbook.weather.persist.WeatherDAO;
import org.sonatype.mavenbook.weather.WeatherService;
import javax.servlet.http.*;
import org.springframework.web.servlet.ModelAndView;
import org.springframework.web.servlet.mvc.Controller;

public class WeatherController implements Controller {

private WeatherService weatherService;
private WeatherDAO weatherDAO;

public ModelAndView handleRequest(HttpServletRequest request,
HttpServletResponse response)

throws Exception {

String zip = request.getParameter("zip");
Weather weather = weatherService.retrieveForecast(zip);
weatherDAO.save(weather);
return new ModelAndView("weather", "weather", weather);

}

public WeatherService getWeatherService() {
return weatherService;

}

public void setWeatherService(WeatherService weatherService) {
this.weatherService = weatherService;

}

Maven by Example 112 / 155

public WeatherDAO getWeatherDAO() {
return weatherDAO;

}

public void setWeatherDAO(WeatherDAO weatherDAO) {
this.weatherDAO = weatherDAO;

}
}

WeatherController implements the Spring MVC Controller interface that mandates the presence
of a handleRequest() method with the signature shown in the example. If you look at the meat of
this method, you’ll see that it invokes the retrieveForecast() method on the weatherService
instance variable. Unlike the previous chapter, which had a Servlet that instantiated the WeatherSe
rvice class, the WeatherController is a bean with a weatherService property. The Spring
IoC container is responsible for wiring the controller to the weatherService component. Also notice
that we’re not using the WeatherFormatter in this Spring controller implementation; instead, we’re
passing the Weather object returned by retrieveForecast() to the constructor of ModelAndV
iew. This ModelAndView class is going to be used to render a Velocity template, and this template
will have references to a ${weather} variable. The weather.vm template is stored in src/main/
webapp/WEB-INF/vm and is shown in weather.vm Template Rendered by WeatherController.

In the WeatherController, before we render the output of the forecast, we pass the Weather object
returned by the WeatherService to the save() method on WeatherDAO. Here we are saving this
Weather object—using Hibernate—to an HSQLDB database. Later, in HistoryController, we
will see how we can retrieve a history of weather forecasts that were saved by the WeatherControl
ler.

weather.vm Template Rendered by WeatherController

Current Weather Conditions for:
${weather.location.city}, ${weather.location.region},
${weather.location.country}

Temperature: ${weather.condition.temp}
Condition: ${weather.condition.text}
Humidity: ${weather.atmosphere.humidity}
Wind Chill: ${weather.wind.chill}
Date: ${weather.date}

The syntax for this Velocity template is straightforward: variables are referenced using ${} notation. The
expression between the curly braces references a property, or a property of a property on the weather

Maven by Example 113 / 155

variable, which was passed to this template by the WeatherController.

The HistoryController is used to retrieve recent forecasts that have been requested by the Weat
herController. Whenever we retrieve a forecast from the WeatherController, that controller
saves the Weather object to the database via the WeatherDAO. WeatherDAO then uses Hibernate to
dissect the Weather object into a series of rows in a set of related database tables. The HistoryCont
roller is shown in simple-web HistoryController.

simple-web HistoryController

package org.sonatype.mavenbook.web;

import java.util.*;
import javax.servlet.http.*;
import org.springframework.web.servlet.ModelAndView;
import org.springframework.web.servlet.mvc.Controller;
import org.sonatype.mavenbook.weather.model.*;
import org.sonatype.mavenbook.weather.persist.*;

public class HistoryController implements Controller {

private LocationDAO locationDAO;
private WeatherDAO weatherDAO;

public ModelAndView handleRequest(HttpServletRequest request,
HttpServletResponse response) throws Exception {

String zip = request.getParameter("zip");
Location location = locationDAO.findByZip(zip);
List<Weather> weathers = weatherDAO.recentForLocation(location);

Map<String,Object> model = new HashMap<String,Object>();
model.put("location", location);
model.put("weathers", weathers);

return new ModelAndView("history", model);
}

public WeatherDAO getWeatherDAO() {
return weatherDAO;

}

public void setWeatherDAO(WeatherDAO weatherDAO) {
this.weatherDAO = weatherDAO;

}

public LocationDAO getLocationDAO() {
return locationDAO;

Maven by Example 114 / 155

}

public void setLocationDAO(LocationDAO locationDAO) {
this.locationDAO = locationDAO;

}
}

The HistoryController is wired to two DAO objects defined in simple-persist. The DAOs
are bean properties of the HistoryController: WeatherDAO and LocationDAO. The goal of
the HistoryController is to retrieve a List of Weather objects which correspond to the zip
parameter. When the WeatherDAO saves the Weather object to the database, it doesn’t just store the
zip code, it stores a Location object which is related to the Weather object in the simple-model.
To retrieve a List of Weather objects, the HistoryController first retrieves the Location
object that corresponds to the zip parameter. It does this by invoking the findByZip() method on
LocationDAO.

Once the Location object has been retrieved, the HistoryController will then attempt to re-
trieve recent Weather objects that match the given Location. Once the List<Weather> has been
retrieved, a HashMap is created to hold two variables for the history.vm Velocity template shown in
history.vm Rendered by the HistoryController.

history.vm Rendered by the HistoryController

Weather History for: ${location.city}, ${location.region}, ${location. ←↩

country}

#foreach($weather in $weathers)

Temperature: $weather.condition.temp
Condition: $weather.condition.text
Humidity: $weather.atmosphere.humidity
Wind Chill: $weather.wind.chill
Date: $weather.date

#end

The history.vm template in src/main/webapp/WEB-INF/vm references the location vari-
able to print out information about the location of the forecasts retrieved from the WeatherDAO. This
template then uses a Velocity control structure, #foreach, to loop through each element in the weath
ers variable. Each element in weathers is assigned to a variable named weather and the template
between #foreach and #end is rendered for each observation.

Maven by Example 115 / 155

You’ve seen these Controller implementations, and you’ve seen that they reference other beans de-
fined in simple-weather and simple-persist, they respond to HTTP requests, and they yield
control to some mysterious templating system that knows how to render Velocity templates. All of this
magic is configured in a Spring application context in src/main/webapp/WEB-INF/weather-
servlet.xml. This XML configures the controllers and references other Spring-managed beans. It
is loaded by a ServletContextListener which is also configured to load the applicationC
ontext-weather.xml and applicationContext-persist.xml from the classpath. Let’s
take a closer look at the weather-servlet.xml shown in Spring Controller Configuration weather-
servlet.xml.

Spring Controller Configuration weather-servlet.xml

<beans>
<bean id="weatherController" v1

class="org.sonatype.mavenbook.web.WeatherController">
<property name="weatherService" ref="weatherService"/>
<property name="weatherDAO" ref="weatherDAO"/>

</bean>

<bean id="historyController"
class="org.sonatype.mavenbook.web.HistoryController">

<property name="weatherDAO" ref="weatherDAO"/>
<property name="locationDAO" ref="locationDAO"/>

</bean>

<!-- you can have more than one handler defined -->
<bean id="urlMapping"

class="org.springframework.web.servlet.handler.
SimpleUrlHandlerMapping">

<property name="urlMap">
<map>
<entry key="/weather.x"> v2

<ref bean="weatherController" />
</entry>
<entry key="/history.x">

<ref bean="historyController" />
</entry>

</map>
</property>

</bean>

<bean id="velocityConfig" v3
class="org.springframework.web.servlet.view.velocity.
VelocityConfigurer">

<property name="resourceLoaderPath" value="/WEB-INF/vm/"/>
</bean>

<bean id="viewResolver" v4

Maven by Example 116 / 155

class="org.springframework.web.servlet.view.velocity.
VelocityViewResolver">

<property name="cache" value="true"/>
<property name="prefix" value=""/>
<property name="suffix" value=".vm"/>
<property name="exposeSpringMacroHelpers" value="true"/>

</bean>
</beans>

v1 The weather-servlet.xml defines the two controllers as Spring-managed beans. weathe
rController has two properties which are references to weatherService and weather
DAO. historyController references the beans weatherDAO and locationDAO. When
this ApplicationContext is created, it is created in an environment that has access to the
ApplicationContexts defined in both simple-persist and simple-weather. In
web.xml for simple-webapp you will see how Spring is configured to merge components from
multiple Spring configuration files.v2 The urlMapping bean defines the URL patterns which invoke the WeatherController and
the HistoryController. In this example, we are using the SimpleUrlHandlerMapping
and mapping /weather.x to WeatherController and /history.x to HistoryCont
roller.v3 Since we are using the Velocity templating engine, we will need to pass in some configuration
options. In the velocityConfig bean, we are telling Velocity to look for all templates in the /
WEB-INF/vm directory.v4 Last, the viewResolver is configured with the class VelocityViewResolver. There are
a number of ViewResolver implementations in Spring from a standard ViewResolver to render
JSP or JSTL pages to a resolver which can render Freemarker templates. In this example, we’re
configuring the Velocity templating engine and setting the default prefix and suffix which will be
automatically appended to the names of the template passed to ModelAndView.

Finally, the simple-webapp project was a web.xml which provides the basic configuration for the
web application. The web.xml file is shown in web.xml for simple-webapp.

web.xml for simple-webapp

<web-app id="simple-webapp" version="2.4"
xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">
<display-name>Simple Web Application</display-name>

Maven by Example 117 / 155

<context-param> v1
<param-name>contextConfigLocation</param-name>
<param-value>
classpath:applicationContext-weather.xml
classpath:applicationContext-persist.xml

</param-value>
</context-param>

<context-param> v2
<param-name>log4jConfigLocation</param-name>
<param-value>/WEB-INF/log4j.properties</param-value>

</context-param>

<listener> v3
<listener-class>
org.springframework.web.util.Log4jConfigListener

</listener-class>
</listener>

<listener>
<listener-class> v4
org.springframework.web.context.ContextLoaderListener

</listener-class>
</listener>

<servlet> v5
<servlet-name>weather</servlet-name>
<servlet-class>
org.springframework.web.servlet.DispatcherServlet

</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping> v6
<servlet-name>weather</servlet-name>
<url-pattern>*.x</url-pattern>

</servlet-mapping>
</web-app>

v1 Here’s a bit of magic which allows us to reuse the applicationContext-weather.xml
and applicationContext-persist.xml in this project. The contextConfigLocat
ion is used by the ContextLoaderListener to create an ApplicationContext. When
the weather servlet is created, the weather-servlet.xml from Spring Controller Configura-
tion weather-servlet.xml is going to be evaluated with the ApplicationContext created from
this contextConfigLocation. In this way, you can define a set of beans in another project
and you can reference these beans via the classpath. Since the simple-persist and simple-

Maven by Example 118 / 155

weather JARs are going to be in WEB-INF/lib, all we do is use the classpath: prefix to
reference these files. (Another option would have been to copy these files to /WEB-INF and
reference them with something like /WEB-INF/applicationContext-persist.xml.)v2 The log4jConfigLocation is used to tell the Log4JConfigListener where to look for
Log4J logging configuration. In this example, we tell Log4J to look in /WEB-INF/log4j.
properties.v3 This makes sure that the Log4J system is configured when the web application starts. It is impor-
tant to put this Log4JConfigListener before the ContextLoaderListener; otherwise,
you may miss important logging messages which point to a problem preventing application startup.
If you have a particularly large set of beans managed by Spring, and one of them happens to blow
up on application startup, your application will fail. If you have logging initialized before Spring
starts, you might have a chance to catch a warning or an error. If you don’t have logging initialized
before Spring starts up, you’ll have no idea why your application refuses to start.v4 The ContextLoaderListener is essentially the Spring container. When the application
starts, this listener will build an ApplicationContext from the contextConfigLocat
ion parameter.v5 We define a Spring MVC DispatcherServlet with a name of weather. This will cause
Spring to look for a Spring configuration file in /WEB-INF/weather-servlet.xml. You
can have as many DispatcherServlets as you need; a DispatcherServlet can contain
one or more Spring MVC Controller implementations.v6 All requests ending in .x will be routed to the weather servlet. Note that the .x extension has
no particular meaning; it is an arbitrary choice and you can use whatever URL pattern you like.

7.7 Running the Web Application

To run the web application, you’ll first need to build the entire multi-module project and then build the
database using the Hibernate3 plugin. First, from the top-level simple-parent project directory, run
mvn clean install:

$ mvn clean install

Running mvn clean install at the top-level of your multi-module project will install all of modules
into your local Maven repository. You need to do this before building the database from the simple-
webapp project.

Maven by Example 119 / 155

Warning
This plugin version requires Java 6 to work.

To build the database from the simple-webapp project, run the following from the simple-webapp
project’s directory:

$ mvn hibernate3:hbm2ddl
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: ’hibernate3’.
[INFO] org.codehaus.mojo: checking for updates from central
[INFO] ---
[INFO] Building Multi-Spring Chapter Simple Web Application
[INFO]task-segment: [hibernate3:hbm2ddl]
[INFO] ---
[INFO] Preparing hibernate3:hbm2ddl
...
10:24:56,151 INFO org.hibernate.tool.hbm2ddl.SchemaExport - export ←↩

complete
[INFO] ---
[INFO] BUILD SUCCESSFUL
[INFO] ---

Once you’ve done this, there should be a ${basedir}/data directory which will contain the HSQLDB
database. You can then start the web application with:

$ mvn jetty:run
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: ’jetty’.
[INFO] ---
[INFO] Building Multi-Spring Chapter Simple Web Application
[INFO]task-segment: [jetty:run]
[INFO] ---
[INFO] Preparing jetty:run
...
[INFO] [jetty:run]
[INFO] Configuring Jetty for project:
Multi-Spring Chapter Simple Web Application
...
[INFO] Context path = /simple-webapp
[INFO] Tmp directory = determined at runtime
[INFO] Web defaults = org/mortbay/jetty/webapp/webdefault.xml
[INFO] Web overrides = none
[INFO] Starting jetty 6.1.7 ...
2008-03-25 10:28:03.639::INFO: jetty-6.1.7

Maven by Example 120 / 155

...
2147 INFO DispatcherServlet - FrameworkServlet ’weather’: \
initialization completed in 1654 ms
2008-03-25 10:28:06.341::INFO: Started SelectChannelConnector@0 ←↩

.0.0.0:8080
[INFO] Started Jetty Server

Once Jetty is started, you can load http://localhost:8080/simple-webapp/weather.x?zip=60202 and you
should see the weather for Evanston, IL in your web browser. Change the ZIP code and you should be
able to get your own weather report.

Current Weather Conditions for: Evanston, IL, US

* Temperature: 42

* Condition: Partly Cloudy

* Humidity: 55

* Wind Chill: 34

* Date: Tue Mar 25 10:29:45 CDT 2008

7.8 The Simple Command Module

The simple-command project is a command-line version of the simple-webapp. It is a utility that
relies on the same dependencies: simple-persist and simple-weather. Instead of interacting
with this application via a web browser, you would run the simple-command utility from the command
line.

http://localhost:8080/simple-webapp/weather.x?zip=60202

Maven by Example 121 / 155

Figure 7.4: Command Line Application Referencing simple-weather and simple-persist

POM for simple-command

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>

<groupId>org.sonatype.mavenbook.multispring</groupId>
<artifactId>simple-parent</artifactId>
<version>1.0</version>

</parent>

<artifactId>simple-command</artifactId>
<packaging>jar</packaging>
<name>Simple Command Line Tool</name>

<build>
<finalName>${project.artifactId}</finalName>
<plugins>

Maven by Example 122 / 155

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>

<source>1.5</source>
<target>1.5</target>

</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<configuration>

<testFailureIgnore>true</testFailureIgnore>
</configuration>

</plugin>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>

<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>

</descriptorRefs>
</configuration>

</plugin>
<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>hibernate3-maven-plugin</artifactId>
<version>2.1</version>
<configuration>

<components>
<component>

<name>hbm2ddl</name>
<implementation>annotationconfiguration</implementation>

</component>
</components>

</configuration>
<dependencies>

<dependency>
<groupId>hsqldb</groupId>
<artifactId>hsqldb</artifactId>
<version>1.8.0.7</version>

</dependency>
</dependencies>

</plugin>
</plugins>

</build>

<dependencies>
<dependency>
<groupId>org.sonatype.mavenbook.multispring</groupId>

Maven by Example 123 / 155

<artifactId>simple-weather</artifactId>
<version>1.0</version>

</dependency>
<dependency>
<groupId>org.sonatype.mavenbook.multispring</groupId>
<artifactId>simple-persist</artifactId>
<version>1.0</version>

</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring</artifactId>
<version>2.0.7</version>

</dependency>
<dependency>
<groupId>hsqldb</groupId>
<artifactId>hsqldb</artifactId>
<version>1.8.0.7</version>

</dependency>
</dependencies>

</project>

This POM creates a JAR file which will contain the org.sonatype.mavenbook.weather.Main
class shown in The Main Class for simple-command. In this POM we configure the Maven Assembly
plugin to use a built-in assembly descriptor named jar-with-dependencies which creates a single
JAR file containing all the bytecode a project needs to execute, including the bytecode from the project
you are building and all the bytecode from libraries your project depends upons.

The Main Class for simple-command

package org.sonatype.mavenbook.weather;

import java.util.List;

import org.apache.log4j.PropertyConfigurator;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

import org.sonatype.mavenbook.weather.model.Location;
import org.sonatype.mavenbook.weather.model.Weather;
import org.sonatype.mavenbook.weather.persist.LocationDAO;
import org.sonatype.mavenbook.weather.persist.WeatherDAO;

public class Main {

private WeatherService weatherService;
private WeatherDAO weatherDAO;
private LocationDAO locationDAO;

Maven by Example 124 / 155

public static void main(String[] args) throws Exception {
// Configure Log4J
PropertyConfigurator.configure(

Main.class.getClassLoader().getResource("log4j.properties"));

// Read the zip code from the Command-line
// (if none supplied, use 60202)
String zipcode = "60202";
try {

zipcode = args[0];
} catch (Exception e) {
}

// Read the Operation from the Command-line
// (if none supplied use weather)
String operation = "weather";
try {

operation = args[1];
} catch (Exception e) {
}

// Start the program
Main main = new Main(zipcode);

ApplicationContext context =
new ClassPathXmlApplicationContext(
new String[] { "classpath:applicationContext-weather.xml",

"classpath:applicationContext-persist.xml" });
main.weatherService =

(WeatherService) context.getBean("weatherService");
main.locationDAO = (LocationDAO) context.getBean("locationDAO");
main.weatherDAO = (WeatherDAO) context.getBean("weatherDAO");
if(operation.equals("weather")) {

main.getWeather();
} else {

main.getHistory();
}

}

private String zip;

public Main(String zip) {
this.zip = zip;

}

public void getWeather() throws Exception {
Weather weather = weatherService.retrieveForecast(zip);
weatherDAO.save(weather);

Maven by Example 125 / 155

System.out.print(new WeatherFormatter().formatWeather(weather));
}

public void getHistory() throws Exception {
Location location = locationDAO.findByZip(zip);
List<Weather> weathers = weatherDAO.recentForLocation(location);
System.out.print(

new WeatherFormatter().formatHistory(location, weathers));
}

}

The Main class has a reference to WeatherDAO, LocationDAO, and WeatherService. The static
main() method in this class:

• Reads the zip code from the first command line argument

• Reads the operation from the second command line argument. If the operation is "weather", the latest
weather will be retrieved from the web service. If the operation is "history", the program will fetch
historical weather records from the local database.

• Loads a Spring ApplicationContext using two XML files loaded from simple-persist and
simple-weather

• Creates an instance of Main

• Populates the weatherService, weatherDAO, and locationDAO with beans from the Spring
ApplicationContext

• Runs the appropriate method getWeather() or getHistory(), depending on the specified oper-
ation

In the web application we use Spring VelocityViewResolver to render a Velocity template. In
the stand-alone implementation, we need to write a simple class which renders our weather data with a
Velocity template. WeatherFormatter Renders Weather Data using a Velocity Template is a listing of the
WeatherFormatter, a class with two methods that render the weather report and the weather history.

WeatherFormatter Renders Weather Data using a Velocity Template

package org.sonatype.mavenbook.weather;

import java.io.InputStreamReader;
import java.io.Reader;
import java.io.StringWriter;
import java.util.List;

Maven by Example 126 / 155

import org.apache.log4j.Logger;
import org.apache.velocity.VelocityContext;
import org.apache.velocity.app.Velocity;

import org.sonatype.mavenbook.weather.model.Location;
import org.sonatype.mavenbook.weather.model.Weather;

public class WeatherFormatter {

private static Logger log = Logger.getLogger(WeatherFormatter.class);

public String formatWeather(Weather weather) throws Exception {
log.info("Formatting Weather Data");
Reader reader =

new InputStreamReader(getClass().getClassLoader().
getResourceAsStream("weather.vm"));

VelocityContext context = new VelocityContext();
context.put("weather", weather);
StringWriter writer = new StringWriter();
Velocity.evaluate(context, writer, "", reader);
return writer.toString();

}

public String formatHistory(Location location, List<Weather> weathers)
throws Exception {
log.info("Formatting History Data");
Reader reader =

new InputStreamReader(getClass().getClassLoader().
getResourceAsStream("history.vm"));

VelocityContext context = new VelocityContext();
context.put("location", location);
context.put("weathers", weathers);
StringWriter writer = new StringWriter();
Velocity.evaluate(context, writer, "", reader);
return writer.toString();

}
}

The weather.vm template simply prints the zip code’s city, country, and region as well as the current
temperature. The history.vm template prints the location and then iterates through the weather records
stored in the local database. Both of these templates are in ${basedir}/src/main/resources.

The weather.vm Velocity Template

**
Current Weather Conditions for:
${weather.location.city},

Maven by Example 127 / 155

${weather.location.region},
${weather.location.country}

**

* Temperature: ${weather.condition.temp}

* Condition: ${weather.condition.text}

* Humidity: ${weather.atmosphere.humidity}

* Wind Chill: ${weather.wind.chill}

* Date: ${weather.date}

The history.vm Velocity Template

Weather History for:
${location.city},
${location.region},
${location.country}

#foreach($weather in $weathers)

**
* Temperature: $weather.condition.temp

* Condition: $weather.condition.text

* Humidity: $weather.atmosphere.humidity

* Wind Chill: $weather.wind.chill

* Date: $weather.date
#end

7.9 Running the Simple Command

The simple-command project is configured to create a single JAR containing the bytecode of the
project and all of the bytecode from the dependencies. To create this assembly, run the assembly goal
of the Maven Assembly plugin from the simple-command project directory:

$ mvn assembly:assembly
[INFO] ---
[INFO] Building Multi-spring Chapter Simple Command Line Tool
[INFO]task-segment: [assembly:assembly] (aggregator-style)
[INFO] ---
[INFO] [resources:resources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:compile]
[INFO] Nothing to compile - all classes are up to date
[INFO] [resources:testResources]

Maven by Example 128 / 155

[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:testCompile]
[INFO] Nothing to compile - all classes are up to date
[INFO] [surefire:test]
...
[INFO] [jar:jar]
[INFO] Building jar: .../simple-parent/simple-command/target/simple- ←↩

command.jar
[INFO] [assembly:assembly]
[INFO] Processing DependencySet (output=)
[INFO] Building jar: .../simple-parent/simple-command/target
/simple-command-jar-with-dependencies.jar

The build progresses through the lifecycle compiling bytecode, running tests, and finally building a JAR
for the project. Then the assembly:assembly goal creates a JAR with dependencies by unpacking all
of the dependencies to temporary directories and then collecting all of the bytecode into a single JAR in
target/ named simple-command-jar-with-dependencies.jar. This "uber" JAR weighs
in at 15 MB.

Before you run the command-line tool, you will need to invoke the hbm2ddl goal of the Hibernate3
plugin to create the HSQLDB database. Do this by running the following command from the simple-
command directory:

$ mvn hibernate3:hbm2ddl
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: ’hibernate3’.
[INFO] org.codehaus.mojo: checking for updates from central
[INFO] ---
[INFO] Building Multi-spring Chapter Simple Command Line Tool
[INFO]task-segment: [hibernate3:hbm2ddl]
[INFO] ---
[INFO] Preparing hibernate3:hbm2ddl
...
10:24:56,151 INFO org.hibernate.tool.hbm2ddl.SchemaExport - export ←↩

complete
[INFO] ---
[INFO] BUILD SUCCESSFUL
[INFO] ---

Once you run this, you should see a data directory under simple-command. This data directory
holds the HSQLDB database. To run the command-line weather forecaster, run the following from the
simple-command project directory:

$ java -cp target/simple-command-jar-with-dependencies.jar \
org.sonatype.mavenbook.weather.Main 60202

2321 INFO YahooRetriever - Retrieving Weather Data

Maven by Example 129 / 155

2489 INFO YahooParser - Creating XML Reader
2581 INFO YahooParser - Parsing XML Response
2875 INFO WeatherFormatter - Formatting Weather Data

**
Current Weather Conditions for:
Evanston,
IL,
US

**

* Temperature: 75

* Condition: Partly Cloudy

* Humidity: 64

* Wind Chill: 75

* Date: Wed Aug 06 09:35:30 CDT 2008

To run a history query, execute the following command:

$ java -cp target/simple-command-jar-with-dependencies.jar \
org.sonatype.mavenbook.weather.Main 60202 history

2470 INFO WeatherFormatter - Formatting History Data
Weather History for:
Evanston, IL, US

**
* Temperature: 39

* Condition: Heavy Rain

* Humidity: 93

* Wind Chill: 36

* Date: 2007-12-02 13:45:27.187

**
* Temperature: 75

* Condition: Partly Cloudy

* Humidity: 64

* Wind Chill: 75

* Date: 2008-08-06 09:24:11.725

**
* Temperature: 75

* Condition: Partly Cloudy

* Humidity: 64

* Wind Chill: 75

* Date: 2008-08-06 09:27:28.475

Maven by Example 130 / 155

7.10 Conclusion

We’ve spent a great deal of time on topics not directly related to Maven to get this far. We’ve done this to
present a complete and meaningful example project which you can use to implement real-world systems.
We didn’t take any shortcuts to produce slick, canned results quickly, and we’re not going to dazzle you
with some Ruby on Rails-esque wizardry and lead you to believe that you can create a finished Java
Enterprise application in "10 easy minutes!" There’s too much of this in the market; there are too many
people trying to sell you the easiest framework that requires zero investment of time or attention. What
we’re trying to do in this chapter is present the entire picture, the entire ecosystem of a multi-module
build. What we’ve done is present Maven in the context of a application which resembles something you
could see in the wild—not the fast-food, 10 minute screen-cast that slings mud at Apache Ant and tries to
convince you to adopt Apache Maven.

If you walk away from this chapter wondering what it has to do with Maven, we’ve succeeded. We present
a complex set of projects, using popular frameworks, and we tie them together using declarative builds.
The fact that more than 60% of this chapter was spent explaining Spring and Hibernate should tell you
that Maven, for the most part, stepped out of the way. It worked. It allowed us to focus on the application
itself, not on the build process. Instead of spending time discussing Maven, and the work you would have
to do to "build a build" that integrated with Spring and Hibernate, we talked almost exclusively about the
technologies used in this contrived project. If you start to use Maven, and you take the time to learn it,
you really do start to benefit from the fact that you don’t have to spend time coding up some procedural
build script. You don’t have to spend your time worrying about mundane aspects of your build.

You can use the skeleton project introduced in this chapter as the foundation for your own, and chances are
that when you do, you’ll find yourself creating more and more modules as you need them. For example,
the project on which this chapter was based has two distinct model projects, two persistence projects
which persist to dramatically different databases, several web applications, and a Java mobile application.
In total, the real world system I based this on contains at least 15 interrelated modules. The point is that
you’ve seen the most complex multi-module example we’re going to include in this book, but you should
also know that this example just scratches the surface of what is possible with Maven.

7.10.1 Programming to Interface Projects

This chapter explored a multi-module project which was more complex than the simple example presented
in Chapter 6, yet it was still a simplification of a real-world project. In a larger project, you might find
yourself building a system resembling Figure 7.5.

Maven by Example 131 / 155

Figure 7.5: Programming to Interface Projects

When we use the term interface project we are referring to a Maven project which contains interfaces and
constants only. In Figure 7.5 the interface projects would be persist-api and parse-api. If big-
command and big-webapp are written to the interfaces defined in persist-api, then it is very
easy to just swap in another implementation of the persistence library. This particular diagram shows two
implementations of the persist-api project, one which stores data in an XML database, and the other
which stores data in a relational database. If you use some of the concepts in this chapter, you can see
how you could just pass in a flag to the program that swaps in a different Spring application context XML
file to swap out data sources of persistence implementations. Just like the OO design of the application
itself, it is often wise to separate the interfaces of an API from the implementation of the API into separate
Maven projects.

Maven by Example 132 / 155

Chapter 8

Optimizing and Refactoring POMs

8.1 Introduction

In Chapter 7, we showed how many pieces of Maven come together to produce a fully functional multi-
module build. Although the example from that chapter suggests a real application—one that interacts with
a database, a web service, and that itself presents two interfaces: one in a web application, and one on the
command line—that example project is still contrived. To present the complexity of a real project would
require a book far larger than the one you are now reading. Real-life applications evolve over years and
are often maintained by large, diverse groups of developers, each with a different focus. In a real-world
project, you are often evaluating decisions and designs made and created by others. In this chapter, we
take a step back from the examples you’ve seen in the previous chapters, and we ask ourselves if there are
any optimizations that might make more sense given what we now know about Maven. Maven is a very
capable tool that can be as simple or as complex as you need it to be. Because of this, there are often a
million ways to accomplish the same task, and there is often no one “right” way to configure your Maven
project.

Don’t misinterpret that last sentence as a license to go off and ask Maven to do something it wasn’t de-
signed for. While Maven allows for a diversity of approach, there is certainly “A Maven Way”, and you’ll
be more productive using Maven as it was designed to be used. All this chapter is trying to do is com-
municate some of the optimizations you can perform on an existing Maven project. Why didn’t we just
introduce an optimized POM in the first place? Designing POMs for pedagogy is a very different require-
ment from designing POMs for efficiency. While it is certainly much easier to define a certain setting in
your ~/.m2/settings.xml than to declare a profile in a pom.xml, writing a book, and reading a
book is mostly about pacing and making sure we’re not introducing concepts before you are ready. In the

Maven by Example 133 / 155

previous chapters, we’ve made an effort not to overwhelm the reader with too much information, and, in
doing so, we’ve skipped some core concepts like the dependencyManagement element introduced in
this chapter.

There are many instances in the previous chapters when the authors of this book took a shortcut or glossed
over an important detail to shuffle you along to the main point of a specific chapter. You learned how to
create a Maven project, and you compiled and installed it without having to wade through hundreds of
pages introducing every last switch and dial available to you. We’ve done this because we believe it is
important to deliver the new Maven user to a result faster rather than meandering our way through a very
long, seemingly interminable story. Once you’ve started to use Maven, you should know how to analyze
your own projects and POMs. In this chapter, we take a step back and look at what we are left with after
the example from Chapter 7.

8.2 POM Cleanup

Optimizing a multimodule project’s POM is best done in several passes, as there are many areas to focus
on. In general, we are looking for repetition within a POM and across the sibling POMs. When you are
starting out, or when a project is still evolving rapidly, it is acceptable to duplicate some dependencies and
plugin configurations here and there, but as the project matures and as the number of modules increases,
you will want to take some time to refactor common dependencies and configuration points. Making
your POMs more efficient will go a long way to helping you manage complexity as your project grows.
Whenever there is duplication of some piece of information, there is usually a better way.

8.3 Optimizing Dependencies

If you look through the various POMs you notice a lot of duplication that you can remove by moving
parts into a parent POM.

Just as in your project’s source code, any time you have duplication in your POMs, you open the door a
bit for trouble down the road. Duplicated dependency declarations make it difficult to ensure consistent
versions across a large project. When you only have two or three modules, this might not be a primary
issue, but when your organization is using a large, multimodule Maven build to manage hundreds of com-
ponents across multiple departments, one single mismatch between dependencies can cause chaos and
confusion. A simple version mismatch in a project’s dependency on a bytecode manipulation package
called ASM three levels deep in the project hierarchy could throw a wrench into a web application main-
tained by a completely different group of developers who depend on that particular module. Unit tests
could pass because they are being run with one version of a dependency, but they could fail disastrously

Maven by Example 134 / 155

in production where the bundle (WAR, in this case) was packaged up with a different version. If you have
tens of projects using something like Hibernate Annotations, each repeating and duplicating the depen-
dencies and exclusions, the mean time between someone screwing up a build is going to be very short. As
your Maven projects become more complex, your dependency lists are going to grow, and you are going
to want to consolidate versions and dependency declarations in parent POMs.

The duplication of the sibling module versions can introduce a particularly nasty problem that is not
directly caused by Maven and is learned only after you’ve been bitten by this bug a few times. If you use
the Maven Release plugin to perform your releases, all these sibling dependency versions will be updated
automatically for you, so maintaining them is not the concern. If simple-web version 1.3-SNAP
SHOT depends on simple-persist version 1.3-SNAPSHOT, and if you are performing a release
of the 1.3 version of both projects, the Maven Release plugin is smart enough to change the versions
throughout your multimodule project’s POMs automatically. Running the release with the Release plugin
will automatically increment all of the versions in your build to 1.4-SNAPSHOT, and the release plugin
will commit the code change to the repository. Releasing a huge multimodule project couldn’t be easier,
until. . .

Problems occur when developers merge changes to the POM and interfere with a release that is in
progress. Often a developer merges and occasionally mishandles the conflict on the sibling dependency,
inadvertently reverting that version to a previous release. Since the consecutive versions of the depen-
dency are often compatible, it does not show up when the developer builds, and won’t show up in any
continuous integration build system as a failed build. Imagine a very complex build where the trunk
is full of components at 1.4-SNAPSHOT, and now imagine that Developer A has updated Component
A deep within the project’s hierarchy to depend on version 1.3-SNAPSHOT of Component B. Even
though most developers have 1.4-SNAPSHOT, the build succeeds if version 1.3-SNAPSHOT and 1.
4-SNAPSHOT of Component B are compatible. Maven continues to build the project using the 1.3-
SNAPSHOT version of Component B from the developer’s local repositories. Everything seems to be
going quite smoothly—the project builds, the continuous integration build works fine, and so on. Some-
one might have a mystifying bug related to Component B, but she chalks it up to malevolent gremlins
and moves on. Meanwhile, a pump in the reactor room is steadily building up pressure, until something
blows. . . .

Someone, let’s call them Mr. Inadvertent, had a merge conflict in component A, and mistakenly pegged
component A’s dependency on component B to 1.3-SNAPSHOT while the rest of the project marches
on. A bunch of developers have been trying to fix a bug in component B all this time and they’ve been
mystified as to why they can’t seem to fix the bug in production. Eventually someone looks at component
A and realizes that the dependency is pointing to the wrong version. Hopefully, the bug wasn’t large
enough to cost money or lives, but Mr. Inadvertent feels stupid and people tend to trust him a little less
than they did before the whole sibling dependency screw-up. (Hopefully, Mr. Inadvertent realizes that
this was user error and not Maven’s fault, but more than likely he starts an awful blog and complains
about Maven endlessly to make himself feel better.)

Fortunately, dependency duplication and sibling dependency mismatch are easily preventable if you make

Maven by Example 135 / 155

some small changes. The first thing we’re going to do is find all the dependencies used in more than one
project and move them up to the parent POM’s dependencyManagement section. We’ll leave out the
sibling dependencies for now. The simple-parent pom now contains the following:

<project>
...
<dependencyManagement>

<dependencies>
<dependency>

<groupId>org.springframework</groupId>
<artifactId>spring</artifactId>
<version>2.0.7</version>

</dependency>
<dependency>

<groupId>org.apache.velocity</groupId>
<artifactId>velocity</artifactId>
<version>1.5</version>

</dependency>
<dependency>

<groupId>org.hibernate</groupId>
<artifactId>hibernate-annotations</artifactId>
<version>3.3.0.ga</version>

</dependency>
<dependency>

<groupId>org.hibernate</groupId>
<artifactId>hibernate-commons-annotations</artifactId>
<version>3.3.0.ga</version>

</dependency>
<dependency>

<groupId>org.hibernate</groupId>
<artifactId>hibernate</artifactId>
<version>3.2.5.ga</version>
<exclusions>

<exclusion>
<groupId>javax.transaction</groupId>
<artifactId>jta</artifactId>

</exclusion>
</exclusions>

</dependency>
</dependencies>

</dependencyManagement>
...

</project>

Once these are moved up, we need to remove the versions for these dependencies from each of the POMs;
otherwise, they will override the dependencyManagement defined in the parent project. Let’s look at only
simple-model for brevity’s sake:

Maven by Example 136 / 155

<project>
...
<dependencies>

<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate-annotations</artifactId>

</dependency>
<dependency>

<groupId>org.hibernate</groupId>
<artifactId>hibernate</artifactId>

</dependency>
</dependencies>
...

</project>

The next thing we should do is fix the replication of the hibernate-annotations and hibern
ate-commons-annotations version since these should match. We’ll do this by creating a property
called hibernate.annotations.version. The resulting simple-parent section looks like
this:

<project>
...

<properties>
<hibernate.annotations.version>3.3.0.ga
</hibernate.annotations.version>

</properties>

<dependencyManagement>
...
<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate-annotations</artifactId>
<version>${hibernate.annotations.version}</version>

</dependency>
<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate-commons-annotations</artifactId>
<version>${hibernate.annotations.version}</version>

</dependency>
...

</dependencyManagement>
...

</project>

The last issue we have to resolve is with the sibling dependencies and define the versions of sibling
projects in the top-level parent project. This is certainly a valid approach, but we can also solve the

Maven by Example 137 / 155

version problem just by using two built-in properties — ${project.groupId} and ${project.
version}. Since they are sibling dependencies, there is not much value to be gained by enumerating
them in the parent, so we’ll rely on the built-in ${project.version} property. Because they all share
the same group, we can further future-proof these declarations by referring to the current POM’s group
using the built-in ${project.groupId} property. The simple-command dependency section now
looks like this:

<project>
...
<dependencies>

...
<dependency>

<groupId>${project.groupId}</groupId>
<artifactId>simple-weather</artifactId>
<version>${project.version}</version>

</dependency>
<dependency>

<groupId>${project.groupId}</groupId>
<artifactId>simple-persist</artifactId>
<version>${project.version}</version>

</dependency>
...

</dependencies>
...

</project>

Here’s a summary of the two optimizations we completed that reduce duplication of dependencies:

Pull-up common dependencies to dependencyManagement
If more than one project depends on a specific dependency, you can list the dependency in depen
dencyManagement. The parent POM can contain a version and a set of exclusions; all the child
POM needs to do to reference this dependency is use the groupId and artifactId. Child
projects can omit the version and exclusions if the dependency is listed in dependencyManage
ment.

Use built-in project version and groupId for sibling projects
Use ${project.version} and ${project.groupId} when referring to a sibling project.
Sibling projects almost always share the same groupId, and they almost always share the same
release version. Using ${project.version} will help you avoid the sibling version mismatch
problem discussed previously.

Maven by Example 138 / 155

8.4 Optimizing Plugins

If we take a look at the various plugin configurations, we can see the HSQLDB dependencies duplicated
in several places. Unfortunately, dependencyManagement doesn’t apply to plugin dependencies, but
we can still use a property to consolidate the versions. Most complex Maven multimodule projects tend to
define all versions in the top-level POM. This top-level POM then becomes a focal point for changes that
affect the entire project. Think of version numbers as string literals in a Java class; if you are constantly
repeating a literal, you’ll likely want to make it a variable so that when it needs to be changed, you have
to change it in only one place. Rolling up the version of HSQLDB into a property in the top-level POM
yields the following properties element:

<project>
...
<properties>

<hibernate.annotations.version>3.3.0.ga
</hibernate.annotations.version>

<hsqldb.version>1.8.0.7</hsqldb.version>
</properties>
...

</project>

The next thing we notice is that the hibernate3-maven-plugin configuration is duplicated in the
simple-webapp and simple-command modules. We can manage the plugin configuration in the
top-level POM just as we managed the dependencies in the top-level POM with the dependencyMana
gement section. To do this, we use the pluginManagement element in the top-level POM’s build
element:

<project>
...
<build>

<pluginManagement>
<plugins>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.5</source>
<target>1.5</target>

</configuration>
</plugin>
<plugin>

<groupId>org.codehaus.mojo</groupId>
<artifactId>hibernate3-maven-plugin</artifactId>
<version>2.1</version>
<configuration>
<components>

Maven by Example 139 / 155

<component>
<name>hbm2ddl</name>
<implementation>annotationconfiguration</implementation>

</component>
</components>

</configuration>
<dependencies>
<dependency>

<groupId>hsqldb</groupId>
<artifactId>hsqldb</artifactId>
<version>${hsqldb.version}</version>

</dependency>
</dependencies>

</plugin>
</plugins>

</pluginManagement>
</build>
...

</project>

8.5 Optimizing with the Maven Dependency Plugin

On larger projects, additional dependencies often tend to creep into a POM as the number of dependencies
grow. As dependencies change, you are often left with dependencies that are not being used, and just as
often, you may forget to declare explicit dependencies for libraries you require. Because Maven 2.x
includes transitive dependencies in the compile scope, your project may compile properly but fail to run
in production. Consider a case where a project uses classes from a widely used project such as Jakarta
Commons BeanUtils. Instead of declaring an explicit dependency on BeanUtils, your project simply
relies on a project like Hibernate that references BeanUtils as a transitive dependency. Your project may
compile successfully and run just fine, but if you upgrade to a new version of Hibernate that doesn’t
depend on BeanUtils, you’ll start to get compile and runtime errors, and it won’t be immediately obvious
why your project stopped compiling. Also, because you haven’t explicitly listed a dependency version,
Maven cannot resolve any version conflicts that may arise.

A good rule of thumb in Maven is to always declare explicit dependencies for classes referenced in your
code. If you are going to be importing Commons BeanUtils classes, you should also be declaring a
direct dependency on Commons BeanUtils. Fortunately, via bytecode analysis, the Maven Dependency
plugin is able to assist you in uncovering direct references to dependencies. Using the updated POMs we
previously optimized, let’s look to see if any errors pop up:

$ mvn dependency:analyze
[INFO] Scanning for projects...

Maven by Example 140 / 155

[INFO] Reactor build order:
[INFO] Chapter 8 Simple Parent Project
[INFO] Chapter 8 Simple Object Model
[INFO] Chapter 8 Simple Weather API
[INFO] Chapter 8 Simple Persistence API
[INFO] Chapter 8 Simple Command Line Tool
[INFO] Chapter 8 Simple Web Application
[INFO] Chapter 8 Parent Project
[INFO] Searching repository for plugin with prefix: ’dependency’.

...

[INFO] ---
[INFO] Building Chapter 8 Simple Object Model
[INFO]task-segment: [dependency:analyze]
[INFO] ---
[INFO] Preparing dependency:analyze
[INFO] [resources:resources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:compile]
[INFO] Nothing to compile - all classes are up to date
[INFO] [resources:testResources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:testCompile]
[INFO] Nothing to compile - all classes are up to date
[INFO] [dependency:analyze]
[WARNING] Used undeclared dependencies found:
[WARNING]javax.persistence:persistence-api:jar:1.0:compile
[WARNING] Unused declared dependencies found:
[WARNING]org.hibernate:hibernate-annotations:jar:3.3.0.ga:compile
[WARNING]org.hibernate:hibernate:jar:3.2.5.ga:compile
[WARNING]junit:junit:jar:3.8.1:test

...

[INFO] ---
[INFO] Building Chapter 8 Simple Web Application
[INFO]task-segment: [dependency:analyze]
[INFO] ---
[INFO] Preparing dependency:analyze
[INFO] [resources:resources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:compile]
[INFO] Nothing to compile - all classes are up to date
[INFO] [resources:testResources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:testCompile]
[INFO] No sources to compile
[INFO] [dependency:analyze]

Maven by Example 141 / 155

[WARNING] Used undeclared dependencies found:
[WARNING]org.sonatype.mavenbook.optimize:simple-model:jar:1.0:compile
[WARNING] Unused declared dependencies found:
[WARNING]org.apache.velocity:velocity:jar:1.5:compile
[WARNING]javax.servlet:jstl:jar:1.1.2:compile
[WARNING]taglibs:standard:jar:1.1.2:compile
[WARNING]junit:junit:jar:3.8.1:test

In the truncated output just shown, you can see the output of the dependency:analyze goal. This
goal analyzes the project to see whether there are any indirect dependencies, or dependencies that are
being referenced but are not directly declared. In the simple-model project, the Dependency plugin
indicates a “used undeclared dependency” on javax.persistence:persistence-api. To in-
vestigate further, go to the simple-model directory and run the dependency:tree goal, which
will list all of the project’s direct and transitive dependencies:

$ mvn dependency:tree
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: ’dependency’.
[INFO] ---
[INFO] Building Chapter 8 Simple Object Model
[INFO]task-segment: [dependency:tree]
[INFO] ---
[INFO] [dependency:tree]
[INFO] org.sonatype.mavenbook.optimize:simple-model:jar:1.0
[INFO] +- org.hibernate:hibernate-annotations:jar:3.3.0.ga:compile
[INFO] | \- javax.persistence:persistence-api:jar:1.0:compile
[INFO] +- org.hibernate:hibernate:jar:3.2.5.ga:compile
[INFO] | +- net.sf.ehcache:ehcache:jar:1.2.3:compile
[INFO] | +- commons-logging:commons-logging:jar:1.0.4:compile
[INFO] | +- asm:asm-attrs:jar:1.5.3:compile
[INFO] | +- dom4j:dom4j:jar:1.6.1:compile
[INFO] | +- antlr:antlr:jar:2.7.6:compile
[INFO] | +- cglib:cglib:jar:2.1_3:compile
[INFO] | +- asm:asm:jar:1.5.3:compile
[INFO] | \- commons-collections:commons-collections:jar:2.1.1:compile
[INFO] \- junit:junit:jar:3.8.1:test
[INFO] ---
[INFO] BUILD SUCCESSFUL
[INFO] ---

From this output, we can see that the persistence-api dependency is coming from hibernate.
A cursory scan of the source in this module will reveal many javax.persistence import statements
confirming that we are, indeed, directly referencing this dependency. The simple fix is to add a direct
reference to the dependency. In this example, we put the dependency version in simple-parent’s
dependencyManagement section because the dependency is linked to Hibernate, and the Hibernate
version is declared here. Eventually you are going to want to upgrade your project’s version of Hibernate.

Maven by Example 142 / 155

Listing the persistence-api dependency version near the Hibernate dependency version will make
it more obvious later when your team modifies the parent POM to upgrade the Hibernate version.

If you look at the dependency:analyze output from the simple-web module, you will see that we
also need to add a direct reference to the simple-model dependency. The code in simple-webapp
directly references the model objects in simple-model, and the simple-model is exposed to sim
ple-webapp as a transitive dependency via simple-persist. Since this is a sibling dependency
that shares both the version and groupId, the dependency can be defined in simple-webapp’s
pom.xml using the ${project.groupId} and ${project.version}.

How did the Maven Dependency plugin uncover these issues? How does dependency:analyze know
which classes and dependencies are directly referenced by your project’s bytecode? The Dependency
plugin uses the ObjectWeb ASM (http://asm.objectweb.org/) library to produce a list of “used, undeclared
dependencies” dependencies

In contrast, the list of unused, declared dependencies is a little trickier to validate, and less useful than
the “used, undeclared dependencies.” For one, some dependencies are used only at runtime or for tests,
and they won’t be found in the bytecode. These are pretty obvious when you see them in the output; for
example, JUnit appears in this list, but this is expected because it is used only for unit tests. You’ll also
notice that the Velocity and Servlet API dependencies are listed in this list for the simple-web module.
This is also expected because, although the project doesn’t have any direct references to the classes of
these artifacts, they are still essential during runtime.

Be careful when removing any unused, declared dependencies unless you have very good test coverage,
or you might introduce a runtime error. A more sinister issue pops up with bytecode optimization. For
example, it is legal for a compiler to substitute the value of a constant and optimize away the reference.
Removing this dependency will cause the compile to fail, yet the tool shows it as unused. Future versions
of the Maven Dependency plugin will provide better techniques for detecting and/or ignoring these types
of issues.

You should use the dependency:analyze tool periodically to detect these common errors in your
projects. It can be configured to fail the build if certain conditions are found, and it is also available as a
report.

8.6 Final POMs

As an overview, the final POM files are listed as a reference for this chapter. Final POM for simple-parent
shows the top-level POM for simple-parent.

http://asm.objectweb.org/

Maven by Example 143 / 155

Final POM for simple-parent

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>org.sonatype.mavenbook.optimize</groupId>
<artifactId>simple-parent</artifactId>
<packaging>pom</packaging>
<version>1.0</version>
<name>Chapter 8 Simple Parent Project</name>

<modules>
<module>simple-command</module>
<module>simple-model</module>
<module>simple-weather</module>
<module>simple-persist</module>
<module>simple-webapp</module>

</modules>

<build>
<pluginManagement>
<plugins>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.5</source>
<target>1.5</target>

</configuration>
</plugin>
<plugin>

<groupId>org.codehaus.mojo</groupId>
<artifactId>hibernate3-maven-plugin</artifactId>
<version>2.1</version>
<configuration>
<components>

<component>
<name>hbm2ddl</name>
<implementation>annotationconfiguration</implementation>

</component>
</components>

</configuration>
<dependencies>
<dependency>

<groupId>hsqldb</groupId>
<artifactId>hsqldb</artifactId>

Maven by Example 144 / 155

<version>${hsqldb.version}</version>
</dependency>

</dependencies>
</plugin>

</plugins>
</pluginManagement>

</build>

<properties>
<hibernate.annotations.version>3.3.0.ga
</hibernate.annotations.version>

<hsqldb.version>1.8.0.7</hsqldb.version>
</properties>
<dependencyManagement>

<dependencies>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring</artifactId>
<version>2.0.7</version>

</dependency>
<dependency>
<groupId>org.apache.velocity</groupId>
<artifactId>velocity</artifactId>
<version>1.5</version>

</dependency>
<dependency>
<groupId>javax.persistence</groupId>
<artifactId>persistence-api</artifactId>
<version>1.0</version>

</dependency>
<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate-annotations</artifactId>
<version>${hibernate.annotations.version}</version>

</dependency>
<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate-commons-annotations</artifactId>
<version>${hibernate.annotations.version}</version>

</dependency>
<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate</artifactId>
<version>3.2.5.ga</version>
<exclusions>

<exclusion>
<groupId>javax.transaction</groupId>
<artifactId>jta</artifactId>

</exclusion>

Maven by Example 145 / 155

</exclusions>
</dependency>

</dependencies>
</dependencyManagement>

<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>
</dependencies>

</project>

The POM shown in Final POM for simple-command captures the POM for simple-command, the
command-line version of the tool.

Final POM for simple-command

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>

<groupId>org.sonatype.mavenbook.optimize</groupId>
<artifactId>simple-parent</artifactId>
<version>1.0</version>

</parent>

<artifactId>simple-command</artifactId>
<packaging>jar</packaging>
<name>Chapter 8 Simple Command Line Tool</name>

<build>
<pluginManagement>
<plugins>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-jar-plugin</artifactId>
<configuration>
<archive>

<manifest>
<mainClass>org.sonatype.mavenbook.weather.Main</mainClass>
<addClasspath>true</addClasspath>

</manifest>

Maven by Example 146 / 155

</archive>
</configuration>

</plugin>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<configuration>
<testFailureIgnore>true</testFailureIgnore>

</configuration>
</plugin>
<plugin>

<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<descriptorRefs>

<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>

</configuration>
</plugin>

</plugins>
</pluginManagement>

</build>

<dependencies>
<dependency>
<groupId>${project.groupId}</groupId>
<artifactId>simple-weather</artifactId>
<version>${project.version}</version>

</dependency>
<dependency>
<groupId>${project.groupId}</groupId>
<artifactId>simple-persist</artifactId>
<version>${project.version}</version>

</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring</artifactId>

</dependency>
<dependency>
<groupId>org.apache.velocity</groupId>
<artifactId>velocity</artifactId>

</dependency>
</dependencies>

</project>

The POM shown in Final POM for simple-model is the simple-model project’s POM. The simple-
model project contains all of the model objects used throughout the application.

Maven by Example 147 / 155

Final POM for simple-model

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>

<groupId>org.sonatype.mavenbook.optimize</groupId>
<artifactId>simple-parent</artifactId>
<version>1.0</version>

</parent>
<artifactId>simple-model</artifactId>
<packaging>jar</packaging>

<name>Chapter 8 Simple Object Model</name>

<dependencies>
<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate-annotations</artifactId>

</dependency>
<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate</artifactId>

</dependency>
<dependency>
<groupId>javax.persistence</groupId>
<artifactId>persistence-api</artifactId>

</dependency>
</dependencies>

</project>

The POM shown in Final POM for simple-persist is the simple-persist project’s POM. The sim
ple-persist project contains all of the persistence logic that is implemented using Hibernate.

Final POM for simple-persist

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>

<groupId>org.sonatype.mavenbook.optimize</groupId>
<artifactId>simple-parent</artifactId>
<version>1.0</version>

</parent>

Maven by Example 148 / 155

<artifactId>simple-persist</artifactId>
<packaging>jar</packaging>

<name>Chapter 8 Simple Persistence API</name>

<dependencies>
<dependency>
<groupId>${project.groupId}</groupId>
<artifactId>simple-model</artifactId>
<version>${project.version}</version>

</dependency>
<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate</artifactId>

</dependency>
<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate-annotations</artifactId>

</dependency>
<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate-commons-annotations</artifactId>

</dependency>
<dependency>
<groupId>javax.servlet</groupId>
<artifactId>servlet-api</artifactId>
<version>2.4</version>
<scope>provided</scope>

</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring</artifactId>

</dependency>
</dependencies>

</project>

The POM shown in Final POM for simple-weather is the simple-weather project’s POM. The sim
ple-weather project is the project that contains all of the logic to parse the Yahoo Weather RSS feed.
This project depends on the simple-model project.

Final POM for simple-weather

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>

Maven by Example 149 / 155

<parent>
<groupId>org.sonatype.mavenbook.optimize</groupId>
<artifactId>simple-parent</artifactId>
<version>1.0</version>

</parent>
<artifactId>simple-weather</artifactId>
<packaging>jar</packaging>

<name>Chapter 8 Simple Weather API</name>

<dependencies>
<dependency>
<groupId>${project.groupId}</groupId>
<artifactId>simple-model</artifactId>
<version>${project.version}</version>

</dependency>
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.14</version>

</dependency>
<dependency>
<groupId>dom4j</groupId>
<artifactId>dom4j</artifactId>
<version>1.6.1</version>

</dependency>
<dependency>
<groupId>jaxen</groupId>
<artifactId>jaxen</artifactId>
<version>1.1.1</version>

</dependency>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-io</artifactId>
<version>1.3.2</version>
<scope>test</scope>

</dependency>
</dependencies>

</project>

Finally, the POM shown in Final POM for simple-webapp is the simple-webapp project’s POM.
The simple-webapp project contains a web application that stores retrieved weather forecasts in an
HSQLDB database and that also interacts with the libraries generated by the simple-weather project.

Final POM for simple-webapp

<project xmlns="http://maven.apache.org/POM/4.0.0"

Maven by Example 150 / 155

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>

<groupId>org.sonatype.mavenbook.optimize</groupId>
<artifactId>simple-parent</artifactId>
<version>1.0</version>

</parent>

<artifactId>simple-webapp</artifactId>
<packaging>war</packaging>
<name>Chapter 8 Simple Web Application</name>
<dependencies>

<dependency>
<groupId>javax.servlet</groupId>
<artifactId>servlet-api</artifactId>
<version>2.4</version>
<scope>provided</scope>

</dependency>
<dependency>
<groupId>${project.groupId}</groupId>
<artifactId>simple-model</artifactId>
<version>${project.version}</version>

</dependency>
<dependency>
<groupId>${project.groupId}</groupId>
<artifactId>simple-weather</artifactId>
<version>${project.version}</version>

</dependency>
<dependency>
<groupId>${project.groupId}</groupId>
<artifactId>simple-persist</artifactId>
<version>${project.version}</version>

</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring</artifactId>

</dependency>
<dependency>
<groupId>javax.servlet</groupId>
<artifactId>jstl</artifactId>
<version>1.1.2</version>

</dependency>
<dependency>
<groupId>taglibs</groupId>
<artifactId>standard</artifactId>
<version>1.1.2</version>

</dependency>

Maven by Example 151 / 155

<dependency>
<groupId>org.apache.velocity</groupId>
<artifactId>velocity</artifactId>

</dependency>
</dependencies>
<build>

<finalName>simple-webapp</finalName>
<plugins>
<plugin>
<groupId>org.mortbay.jetty</groupId>
<artifactId>maven-jetty-plugin</artifactId>
<version>6.1.9</version>
<dependencies>

<dependency>
<groupId>hsqldb</groupId>
<artifactId>hsqldb</artifactId>
<version>${hsqldb.version}</version>

</dependency>
</dependencies>

</plugin>
</plugins>

</build>
</project>

8.7 Conclusion

This chapter has shown you several techniques for improving the control of your dependencies and plugins
to ease future maintenance of your builds. We recommend periodically reviewing your builds in this way
to ensure that duplication is reduced and kept at a minimum. This will ensure that your build performance
does not degrade and you produce high quality outputs.

Maven by Example 152 / 155

Chapter 9

Creative Commons License

This work is licensed under a Creative Commons Attribution, Non-commercial, No Derivative Works 3.0
United States license. For more information about this license, see http://creativecommons.org/licenses/-
by-nc-nd/3.0/us/. You are free to share, copy, distribute, display, and perform the work under the following
conditions:

• You must attribute the work to Sonatype, Inc. with a link to http://www.sonatype.com.

If you redistribute this work on a web page, you must include the following link with the URL in the
about attribute listed on a single line (remove the backslashes and join all URL parameters):

<div xmlns:cc="http://creativecommons.org/ns#"
about="http://creativecommons.org/license/results-one?q_1=2&q_1=1\

&field_commercial=n&field_derivatives=n&field_jurisdiction=us\
&field_format=StillImage&field_worktitle=Repository%3A+\ ←↩

Management\
&field_attribute_to_name=Sonatype%2C+Inc.\
&field_attribute_to_url=http%3A%2F%2Fwww.sonatype.com\
&field_sourceurl=http%3A%2F%2Fwww.sonatype.com%2Fbook\
&lang=en_US&language=en_US&n_questions=3">

<a rel="cc:attributionURL" property="cc:attributionName"
href="http://www.sonatype.com">Sonatype, Inc. /

<a rel="license"
href="http://creativecommons.org/licenses/by/3.0/us/">
CC BY 3.0

</div>

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
http://creativecommons.org/licenses/by-nc-nd/3.0/us/
http://www.sonatype.com

Maven by Example 153 / 155

When downloaded or distributed in a jurisdiction other than the United States of America, this work shall
be covered by the appropriate ported version of Creative Commons Attribution, NC, ND Works 3.0 license
for the specific jurisdiction. If the Creative Commons Attribution, NC, ND version 3.0 license is not
available for a specific jurisdiction, this work shall be covered under the Creative Commons Attribution,
NC, ND version 2.5 license for the jurisdiction in which the work was downloaded or distributed. A
comprehensive list of jurisdictions for which a Creative Commons license is available can be found on
the Creative Commons International web site at http://creativecommons.org/international.

If no ported version of the Creative Commons license exists for a particular jurisdiction, this work shall
be covered by the generic, unported Creative Commons Attribution, NC, ND version 3.0 license available
from http://creativecommons.org/licenses/by/3.0/.

http://creativecommons.org/international
http://creativecommons.org/licenses/by/3.0/

Maven by Example 154 / 155

Chapter 10

Copyright

Copyright © 2011 Sonatype, Inc.

Online version published by Sonatype, Inc.

This work is licensed under a Creative Commons Attribution, Non-Commercial, No Derivative Works 3.0
United States license. For more information about this license, see http://creativecommons.org/licenses/-
by-nc-nd/3.0/us/.

Nexus™, Nexus Professional™, Matrix™, Matrix Professional™, Sonatype Professional™, all Matrix-
related logos, and all Nexus-related logos are trademarks or registered trademarks of Sonatype, Inc., in
the United States and other countries.

Java™, all Java-based trademarks and logos, Hudson™, and all Hudson-based trademarks and logos are
trademarks or registered trademarks of Oracle, Inc., in the United States and other countries.

IBM® and WebSphere® are trademarks or registered trademarks of International Business Machines,
Inc., in the United States and other countries.

Eclipse™ is a trademark of the Eclipse Foundation, Inc., in the United States and other countries.

Apache and the Apache feather logo are trademarks of The Apache Software Foundation.

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
http://creativecommons.org/licenses/by-nc-nd/3.0/us/

Maven by Example 155 / 155

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Sonatype, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

	Introducing Apache Maven
	Maven… What is it?
	Convention Over Configuration
	A Common Interface
	Universal Reuse through Maven Plugins
	Conceptual Model of a “Project”
	Is Maven an alternative to XYZ?
	Comparing Maven with Ant

	Installing Maven
	Verify your Java Installation
	Downloading Maven
	Installing Maven
	Installing Maven on Linux, BSD and Mac OS X
	Installing Maven on Microsoft Windows
	Setting Environment Variables

	Testing a Maven Installation
	Maven Installation Details
	User-Specific Configuration and Repository
	Upgrading a Maven Installation

	Uninstalling Maven
	Getting Help with Maven
	About the Apache Software License

	A Simple Maven Project
	Introduction
	Downloading this Chapter's Example

	Creating a Simple Project
	Building a Simple Project
	Simple Project Object Model
	Core Concepts
	Maven Plugins and Goals
	Maven Lifecycle
	Maven Coordinates
	Maven Repositories
	Maven's Dependency Management
	Site Generation and Reporting

	Summary

	Customizing a Maven Project
	Introduction
	Downloading this Chapter's Example

	Defining the Simple Weather Project
	Yahoo Weather RSS

	Creating the Simple Weather Project
	Customize Project Information
	Add New Dependencies
	Simple Weather Source Code
	Add Resources
	Running the Simple Weather Program
	The Maven Exec Plugin
	Exploring Your Project Dependencies

	Writing Unit Tests
	Adding Test-scoped Dependencies
	Adding Unit Test Resources
	Executing Unit Tests
	Ignoring Test Failures
	Skipping Unit Tests

	Building a Packaged Command Line Application
	Attaching the Assembly Goal to the Package Phase

	A Simple Web Application
	Introduction
	Downloading this Chapter's Example

	Defining the Simple Web Application
	Creating the Simple Web Project
	Configuring the Jetty Plugin
	Adding a Simple Servlet
	Adding J2EE Dependencies
	Conclusion

	A Multi-Module Project
	Introduction
	Downloading this Chapter's Example

	The Simple Parent Project
	The Simple Weather Module
	The Simple Web Application Module
	Building the Multimodule Project
	Running the Web Application

	Multi-Module Enterprise Project
	Introduction
	Downloading this Chapter's Example
	Multi-Module Enterprise Project
	Technology Used in this Example

	The Simple Parent Project
	The Simple Model Module
	The Simple Weather Module
	The Simple Persist Module
	The Simple Web Application Module
	Running the Web Application
	The Simple Command Module
	Running the Simple Command
	Conclusion
	Programming to Interface Projects

	Optimizing and Refactoring POMs
	Introduction
	POM Cleanup
	Optimizing Dependencies
	Optimizing Plugins
	Optimizing with the Maven Dependency Plugin
	Final POMs
	Conclusion

	Creative Commons License
	Copyright

