
 Kubernetes Security
Best Practices

ianmlewis@

Ian Lewis
● @IanMLewis

●
● 🗼 Tokyo, Japan

● #kubernetes, #go,

#python

Kubernetes
● Container

Orchestrator

● An operations

framework

Topics
● Security 101

● Runtime Security

● Host Security

● Network Security

● Threat detection

● Build Hygiene

● Image Hygiene

● SecOps

Topics
● Security 101

● Runtime Security

● Host Security

● Network Security

● Threat detection

● Build Hygiene

● Image Hygiene

● SecOps

✔
✔
✔
✔
✗
✗
✗
✗

Security 101
● Security is a spectrum

● Attackers can pick their

targets

● Provide as many hurdles

between the threat and

asset

● Attackers can shift focus.

"It doesn't matter how

many locks are on your

door if your window is

open"

Security 101
● Layered Security/Defence

in Depth

● Good security is redundant

(not DRY)

Network

Node/Host

Runtime

Security 101
● Limit the attack surface

Network

Node/Host

Runtime

Security 101
● Least Privilege

● Only give as much

permission/privilege as is

absolutely necessary

Guestbook app
● Frontend

○ Serves web traffic

● Message

○ Stores/lists

messages

● User

○ Authentication

Kubernetes Cluster

Web
Frontend

Redis

user

message

Kubernetes API Server
1. Get token from

frontend Pod

2. Use token to attack

cluster API server

3. Get secrets etc. to

further attack

Kubernetes Cluster

Web
Frontend

Redis

user

message
①

②

③

Mitigate 1 & 2: RBAC
● Role Based Access Control

● Roles given to users

● Each role has permission to perform some operation

○ get secrets

○ update configmap

○ etc.

● RBAC settings apply to namespace

Mitigate 1 & 2: RBAC

ClusterRole

ClusterRoleBinding

1:many many:1
Verb +
Type

Mitigate 2: API Server Firewall
● Restrict access to API server to certain IP addresses.

● GKE:

○ gcloud container clusters create
--enable-master-authorized-networks
--master-authorized-networks=....

Mitigate 3: Network Policy
● Restrict access to database to only the Pods that require it

● Specify access via labels

● Implemented by Network solution: Calico, Weave, etc.

NetworkPolicy
kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: redis
spec:
 podSelector:
 matchLabels:
 name: redis
 ingress:
 - from:
 - podSelector:
 matchLabels:
 name: message

Get access to cluster
components
1. Manipulate cluster

data in etcd
Host

Web
Frontend

etcd

Mitigate 1: Secure etcd
● Use authentication and firewalls to restrict access to etcd

● Encrypt data in etcd (encryption at rest)

Get access to host
1. Break out of the

container using

container or kernel

exploits

2. Attack the Kubelet

3. Attack other

containers running on

the same host

Host

Web
Frontend

Mitigate 1: Run as non-root
apiVersion: v1
kind: Pod
metadata:
 name: security-context-demo
spec:
 securityContext:
 runAsUser: 1000

Mitigate 1: Read only root filesystem
apiVersion: v1
kind: Pod
metadata:
 name: security-context-demo
spec:
 securityContext:
 readOnlyRootFilesystem: true

Mitigate 1: no_new_privs
apiVersion: v1
kind: Pod
metadata:
 name: security-context-demo
spec:
 securityContext:
 allowPrivilegeEscalation: false

Mitigate 1: Do them all
apiVersion: v1
kind: Pod
metadata:
 name: security-context-demo
spec:
 securityContext:
 runAsUser: 1000
 readOnlyRootFilesystem: true
 allowPrivilegeEscalation: false

Mitigate 1: Sandboxed Pods
1. Pods are sandboxed

from other Pods on

the same host

2. Sandbox provides 2

layers of isolation:

Sandbox + Container

(Linux Kernel)

3. Examples: kata

containers, gVisor

Node Host

Sandbox Pod

Container

Kernel

Container

Kubelet

Runtime

 gVisor

1. User space kernel

2. Intercepts and

implements syscalls in

userspace

3. Sandbox has low

capabilities and runs

with restricted

seccomp filters

Sandbox Process

gVisor
Sentry

Application

Gofer

Kernel

Ptrace/KVM

Host Kernel

9P

 seccomp +
 namespaces

Your App

Mitigate 1:
seccomp/
AppArmor/
SELinux

Container

Mitigate 1:
seccomp/
AppArmor/
SELinux

seccomp
Mitigate 1:
seccomp/
AppArmor/
SELinux

Mitigate 1:
seccomp/
AppArmor/
SELinux

AppArmor/

SELinux

seccomp
apiVersion: v1
kind: Pod
metadata:
 name: mypod
 annotations:
 seccomp.security.alpha.kubernetes.io/pod: runtime/default
...

AppArmor
apiVersion: v1
kind: Pod
metadata:
 name: mypod
 annotations:
 container.apparmor.security.beta.kubernetes.io/hello: runtime/default
spec:
 containers:
 - name: hello
 ...

SELinux
apiVersion: v1
kind: Pod
metadata:
 name: mypod
spec:
securityContext:
 seLinuxOptions:
 level: "s0:c123,c456"
 containers:
 - name: hello
 ...

Mitigate 2 & 3: Restrict Kubelet permissions
● RBAC for Kubelet:

○ --authorization-mode=RBAC,Node
--admission-control=...,NodeRestriction

● Rotate Kubelet certs:
○ kubelet … --rotate-certificates

Unsecured Pods
● You follow the rules

but others don't
Kubernetes Cluster

Web
Frontend

Redis

user

message

Mitigate: Open Policy Agent

Listening to Traffic
1. Sniffing or

intercepting traffic on

the network

2. Request forgery

Kubernetes Cluster

Web
Frontend

Redis

user

message

①

②

istio
● Service mesh

● Includes Envoy proxy

istio
1. Proxy data between

services

2. End-to-end

encryption

3. Rolling certificates

4. Policy managed by

central server

Kubernetes Cluster

Web
Frontend

Redis
user

message

istio
1. Proxy data between

services

2. End-to-end

encryption

3. Rolling certificates

4. Policy managed by

central server

Kubernetes Cluster

Web
Frontend

Redis
user

message

Tips
1. Update Kubernetes early & often

2. Don't use admin for day-to-day work

3. Try benchmarking tools like kube-bench

4. Use managed services like GKE

Thanks!

