

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

http://www.vmware.com/company.html

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Service Mesh
VMware Special Edition

by Niran Even-Chen,
Oren Penso, and Susan Wu

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Service Mesh For Dummies®, VMware Special Edition

Published by
John Wiley & Sons, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2020 by John Wiley & Sons, Inc., Hoboken, New Jersey

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
the prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, The Dummies Way, Dummies.com,
Making Everything Easier, and related trade dress are trademarks or registered trademarks of John
Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not be
used without written permission. All other trademarks are the property of their respective owners.
John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE
AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS
WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN
RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL
ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING
HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK
AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN
THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION
OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, or how to create a custom For
Dummies book for your business or organization, please contact our Business Development
Department in the U.S. at 877-409-4177, contact info@dummies.biz, or visit www.wiley.com/
go/custompub. For information about licensing the For Dummies brand for products or services,
contact BrandedRights&Licenses@Wiley.com.

ISBN 978-1-119-66034-7 (pbk); ISBN 978-1-119-66036-1 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Publisher’s Acknowledgments

Some of the people who helped bring this book to market include the following:

Associate Publisher: Katie Mohr

Editorial Manager: Rev Mengle

Business Development
Representative: Karen Hattan

Production Editor:
Tamilmani Varadharaj

Special Help: Sergio Pozo,
Pere Monclus,
Mark Schweighardt

http://www.wiley.com
http://www.wiley.com/go/permissions
mailto:info@dummies.biz
http://www.wiley.com/go/custompub
http://www.wiley.com/go/custompub
mailto:BrandedRights&Licenses@Wiley.com

Table of Contents iii

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Table of Contents
INTRODUCTION ... 1

About This Book ... 1
Foolish Assumptions .. 1
Icons Used in This Book ... 2
Beyond the Book .. 2

CHAPTER 1: The Rise of Microservices and Cloud-Native
Architecture ... 3
Recognizing the Need for Agility ... 3
Understanding That Application Architectures Are Changing 4

Service-oriented architecture .. 4
Microservices ... 5

Seeing That Distributed Applications Require a Reliable
Network ... 9
Looking at How Kubernetes and Microservices Work
Together .. 9

CHAPTER 2: Service Mesh: A New Paradigm...................................... 11
Identifying Challenges in Microservices Architectures 11
Introducing Service Mesh .. 13

CHAPTER 3: Service Mesh Use Cases .. 17
Traffic Management ... 17

Network reliability ... 18
Circuit breaking ... 19
Rate limiting ... 20
A/B testing.. 21
Canary releases ... 21
Traffic steering .. 23
Egress control .. 25

Observability ... 26
Metric collection .. 26
Distributed traces ... 27

Security .. 28
mTLS authentication ... 28
Istio authorization ... 29

Service Mesh

iv Service Mesh For Dummies, VMware Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

CHAPTER 4: Recognizing Complexity Challenges
in Service Mesh .. 31
Installing Istio .. 31

Cluster models .. 32
Network models .. 33
Control plane models ... 35

A Traffic-Shifting Configuration Example .. 38

CHAPTER 5: Transforming the Multi-Cloud
Network with NSX Service Mesh 43
Introducing NSX Service Mesh .. 43
Increasing the Scope of the Mesh .. 44
VMware NSX Service Mesh Architecture ... 45
Introducing Global Namespaces .. 46
Federation and Intra-Service Mesh Interoperability 48
NSX Service Mesh Use Cases .. 50

Multi-cloud and hybrid cloud patterns....................................... 50
Business continuity ... 51
End-to-end mutual transport layer security (mTLS) 51
Rolling upgrades at scale ... 52
Predicting end-to-end response time... 52

CHAPTER 6: Ten (Or So) Resources to Help You
Get Started with Service Mesh 55
Online Resources ... 55
Discussion Groups ... 56
Books ... 56
User Stories ... 57
Interactive Labs .. 57
How-To Guides ... 58
Online Courses ... 58
Conferences and Meetups .. 58
Podcasts .. 59

Introduction 1

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Introduction

There’s a common myth that a service mesh is only for a
microservices architecture, but the truth is that a service
mesh can benefit any enterprise that uses service-to-service

communications in its application infrastructure — including
traditional, monolithic applications and modern, cloud-native
apps built on a microservices architecture.

About This Book
Service Mesh For Dummies consists of six chapters that explore

 » The evolution of microservices and cloud-native architecture
(Chapter 1)

 » The basics of service mesh (Chapter 2)

 » Service mesh use cases (Chapter 3)

 » The complexity of service mesh (Chapter 4)

 » Building a multi-cloud network with NSX Service Mesh
(Chapter 5)

 » Additional service mesh resources (Chapter 6)

Each chapter is written to stand on its own, so if you see a topic
that piques your interest, feel free to jump ahead to that chapter.
You can read this book in any order that suits you (though we
don’t recommend upside down or backward).

Foolish Assumptions
It’s been said that most assumptions have outlived their useless-
ness, but we assume a few things nonetheless!

Mainly, we assume that you work for an organization that is
interested in learning how service mesh can create an abstraction
layer for both your traditional and modern cloud-native applica-
tions, regardless of where the application resides — whether on-
premises or in a public cloud on virtual machines, containers, or
bare-metal servers.

2 Service Mesh For Dummies, VMware Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

We also assume that you’re either an application developer or a
platform operator who supports application development. We
assume you have an understanding of technology concepts such as
cloud computing, networking, virtualization, and containers. As
such, this book is written primarily for technical readers.

If any of these assumptions describes you, then this is the book
for you! If none of these assumptions describes you, keep reading
anyway! It’s a great book and when you finish reading it, you’ll
know quite a lot about modern cloud-native application architec-
tures and the service mesh!

Icons Used in This Book
Throughout this book, we occasionally use special icons to call
attention to important information. Here’s what to expect:

This icon points out important information you should commit to
your nonvolatile memory, your gray matter, or your noggin!

If you seek to attain the seventh level of NERD-vana, perk up!
This icon explains the jargon beneath the jargon!

Tips are appreciated, never expected — and we sure hope you
appreciate these useful nuggets of information.

These alerts point out the stuff your mother warned you about.
Well, probably not, but they do offer practical advice to help you
avoid potentially costly or frustrating mistakes.

Beyond the Book
There’s only so much we can cover in 64 short pages, so if
you find yourself at the end of this book, thinking, “Gosh, this
was an amazing book — where can I learn more?,” just go to
www.vmware.com.

https://www.vmware.com/

CHAPTER 1 The Rise of Microservices and Cloud-Native Architecture 3

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 1

IN THIS CHAPTER

 » Recognizing the need for business agility

 » Evolving from monolithic to service-
oriented architecture to microservices

 » Understanding the critical role of the
network

 » Looking at how containers and
Kubernetes have changed app
development

The Rise of Microservices
and Cloud-Native
Architecture

In this chapter, you explore the need for business agility, how
application architectures are evolving, the increasing impor-
tance of the network in modern cloud-native architectures, and

the rise of containers and Kubernetes.

Recognizing the Need for Agility
Digital transformation is driving the need for speed and no
 market vertical is exempt. Companies are under constant pressure
internally and externally to innovate faster and provide value to
the business. In the relentless quest to serve customers and users
better than their competition, many businesses are increasingly
building their own custom software, rather than buying the same
commercial off-the-shelf applications used by their competitors,
to differentiate their products and services and achieve competi-
tive advantage.

4 Service Mesh For Dummies, VMware Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Much of this transformation is achieved in software, and enter-
prises are hiring a growing number of developers to turn inno-
vative ideas into reality. Today’s digital creators and revenue
generators — application developers — are evolving to achieve
not only faster development cycles, but also faster delivery times
and more frequent deployments.

Understanding That Application
Architectures Are Changing

Application architectures are constantly changing. Over the past
several years, the application space has evolved from monolithic
to service-oriented architecture (SOA) to microservices.

From a software development point of view, in a monolithic appli-
cation, all components that compile the application are packaged
and tested as a single unit. If, for example, the user interface (UI)
team needs to make a small change in the code, that small change
can have a ripple effect throughout the entire application stack,
requiring it to be recompiled and redeployed.

In a monolithic architecture, the architectural choices are fixed
and the teams cannot choose their own programming languages
and tools. The entire software development team is stuck using
the same integrated development environment (IDE), working on
the same release, and using waterfall testing.

Disadvantages of monoliths include

 » Fixed architectural choices

 » Fixed development environment

 » Same release cadence

 » Waterfall testing

Service-oriented architecture
SOA is a software architecture in which distinct components of
the application provide services to other components via a com-
munications protocol over a network. SOA integrates distributed,
separately maintained software components that communicate

CHAPTER 1 The Rise of Microservices and Cloud-Native Architecture 5

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

with each other using an enterprise services bus (ESB) messaging
protocol over an Internet Protocol (IP) network.

SOA represents a middle phase between monolithic architectures
and microservices, in which the organization breaks out parts of its
applications and represents them in the network as web services.
There are two main roles in SOA: a service provider and a service
consumer. The consumer layer is where the users (humans, other
components of the apps, or third parties) interact with the SOA,
and the provider layer consists of all the services within the SOA.

Using SOA, organizations can encourage component reuse to
avoid having to develop commonly used services like ecommerce
shopping carts and short message service (SMS). Instead, organi-
zations can just publish these shared services in a service catalog,
and applications can then consume them over the network.

SOA is still the most commonly used architecture, but the adop-
tion of microservices is growing fast.

Some advantages of SOA over monolithic architectures include

 » Component reusability

 » Improved scalability and availability

 » Easy maintenance

The biggest limitation of SOA is the ESB, which is a single point
of failure that potentially impacts the entire system. Every service
communicates over the ESB, so if one of the services slows down,
the ESB can be bogged down by requests for that service.

Microservices
Microservices can be thought of as the next evolution in applica-
tion architecture. Instead of integrating reusable components like
in SOA, services are created for specific business functions in a
microservices architecture.

Web or mobile applications are composed of a suite of indepen-
dent services such as user management, user roles, ecommerce
cart, inventory, shipping, search engine, social media logins, and
more. The services are independent of each other, which means
that each service can be written in a different programming lan-
guage, use a different framework, and use different databases.

6 Service Mesh For Dummies, VMware Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

They can also be scaled and revised independently of another ser-
vice. Unlike SOA, which uses open standards and communicates
using an ESB messaging protocol to communicate between them-
selves, microservices use lightweight HyperText Transfer Proto-
col (HTTP), representational state transfer (REST), or application
programming interfaces (APIs) for communicating between
themselves (see Figure 1-1).

Table 1-1 summarizes the key differences between SOA and
microservices.

FIGURE 1-1: Comparing communications in SOA and microservices.

TABLE 1-1	 Differences between SOA and Microservices
SOA Microservices

Maximizes component reusability Decouples the monolithic app into
services

DevOps and continuous delivery (CD) are
used, but not mainstream

DevOps, continuous integration, and
continuous delivery (CI/CD) are used

Focused on business functionality reuse Focused on creating new services

Supports multiple messaging protocols Uses lightweight protocols such as
HTTP, REST or Thrift APIs

Use of containers is less common Prevalent use of containers

SOA services share data storage Each microservice can have
independent data storage

Common platform for all services
deployed on it

Application servers are not typically
used; instead, cloud platforms are
commonly used

CHAPTER 1 The Rise of Microservices and Cloud-Native Architecture 7

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

To achieve even greater feature velocity and faster production
than SOA, a microservices architecture breaks up entire monoliths
into smaller units with smaller team sizes, each with indepen-
dent workflows, freedom to choose the appropriate architecture
components, and different governance models. Whereas an SOA
architecture breaks some of the application into smaller parts
that are published and consumed via an API over the network,
microservices take the same concept a step further. In a microser-
vices architecture, it’s not just parts of the application that are
broken up; the entire application is broken up into loosely cou-
pled services that can be developed, maintained, and run inde-
pendently from the other parts. After the app is rearchitected, all
the parts communicate over the network via APIs, in exactly the
same manner as SOA.

There are many benefits of a microservices architecture over SOA,
including the following:

 » Freedom to choose the right technologies for the right
job: In both SOA and microservices architectures, services
can be developed in different programming languages and
tools. Teams using either architecture can choose the most
appropriate technology for the problem they’re trying to
solve. However, in SOA, each team needs to know about the
common communication mechanism. With microservices,
the services can operate and be deployed independently of
other services. It’s far easier to deploy new services and scale
independently. In the case of a monolith, the architectural
choices are fixed and the teams cannot choose program-
ming languages and tools. They’re stuck using the same IDE
and the same framework.

 » Independent workflow and full autonomy: SOA encour-
ages sharing of components, whereas microservices focus
on independent services with minimal dependencies.
Microservices give your team control over the full stack they
require to deliver a feature. The benefit of this separation
is a reduction in the amount of coordination required with
other teams. The workflow is independent from other
teams, and the risk of negatively affecting other teams is
minimized. As SOA relies on multiple services to fulfill a
business request, systems built on SOA are likely to be
slower than microservices and revised less frequently than
microservices.

8 Service Mesh For Dummies, VMware Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Independent scalability: With microservices, you can
scale each service according to its workload demands and
performance needs. However, in the case of a monolithic
application, scaling horizontally across more servers can lead
to overprovisioning and underutilization when the workload
demand drops.

 » Easier rollback: If each feature only requires a change
to a single microservice, then that feature can be rolled
back without affecting the workflows of other teams.
Microservices can also improve security by reducing the
attack surface of the application and increase reliability by
reducing the possibility of an outage due to a single fault.

 » Ability to release independently and more frequently:
Microservices limit the scope of changes and reduce the
amount of coordination required between teams. Teams
can release according to their own schedules instead
of being bound to the single cadence of a monolith.
A showstopper bug found in a monolith holds back the
whole release, whereas in microservices the individual
services can be released independently.

 » Independent communication: In microservices, services
communicate independently. If one of the services has a
memory fault, then only that microservice is affected. All the
other microservices will continue to handle requests without
interruptions.

 » Easier upgrade path: Upgrading the framework used by
a large application is nontrivial and can be risky, even under
the best of conditions. Upgrades are much harder when you
need to coordinate sweeping, interlinked changes across
multiple teams. Smaller, independent services give you the
option of only upgrading the services that require the update
or allowing you to perform a rolling upgrade for one service
at a time and/or one team at a time.

 » Protection from change: Monoliths have lines of code
that may be unchanged for months, or even years. However,
some parts of the code require more maintenance than
other parts. The ability to separate the parts of the code
that frequently churn from the parts of the code that don’t
change can reduce the risk of accidental regressions.

CHAPTER 1 The Rise of Microservices and Cloud-Native Architecture 9

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Defined scope: An independent service is much easier to
define and understand, especially if the service is maintained
by the same team. Even if the service needs to be refactored
down the road, the same team can keep the design consis-
tent. A monolith may become inconsistent as the architec-
ture evolves, due to decisions made by the different teams
that maintain the application over time.

Seeing That Distributed Applications
Require a Reliable Network

The network is the glue that brings microservices together to
deliver an app. As you may imagine, microservices communicate
significantly over the network — it’s the connection between your
app’s microservices. Enterprise networks have traditionally been
designed and built to provide redundancy, but you add a network
dependency to your application logic, the potential for network —
and thus, application — failures grows proportionally with the
number of connections that your applications depend upon.

Some web companies have had to develop special frameworks and
libraries to alleviate some of the challenges of an unreliable net-
work. For example, Netflix created projects like Ribbon, Hystrix,
and Eureka to solve these types of problems. Twitter, Facebook,
and Google have all undertaken similar projects. However, adding
networking stacks into an app introduces additional challenges.
For example, when the framework is updated, the applications
also need to be updated.

Looking at How Kubernetes and
Microservices Work Together

The advent of Linux containers and container orchestration from
Kubernetes have fundamentally transformed the way applica-
tions are developed and vastly improved deployment velocity
by focusing on orchestrating containers through each stage of
a well-automated pipeline. Individual services can be packaged
as containers running in Kubernetes pods, complete with their

10 Service Mesh For Dummies, VMware Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

respective language runtime, such as a Java virtual machine (JVM)
or Python, and all the necessary dependencies, such as language-
specific frameworks (such as Spring or Express) and libraries
(such as Java ARchives [JARs] or NPMs [originally Node Package
Managers]). Development teams can now manage their pipelines
independent of the language or framework that runs inside the
container. Kubernetes provides application availability, elastic-
ity, and overall management of complex distributed, polyglot
applications.

Microservices and Kubernetes work together hand-in-hand.
Kubernetes provides round-robin load balancing but does not get
involved with how each of the application components, running
in its own pod, interacts with the others.

The tooling and infrastructure required to quickly deploy distrib-
uted applications is rapidly maturing, but it’s still missing a set
of capabilities to describe how services interact. A service mesh is
the missing link for infrastructure architects and developers.

CHAPTER 2 Service Mesh: A New Paradigm 11

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 2

IN THIS CHAPTER

 » Understanding microservices
architecture challenges

 » Addressing microservices challenges
with a service mesh

Service Mesh: A New
Paradigm

In this chapter, you learn about the challenges introduced by a
microservices architecture and how a service mesh solves these
challenges.

Identifying Challenges in Microservices
Architectures

The benefits of moving to a microservices architecture (discussed
in Chapter 1) are well understood. But breaking an application into
smaller components also introduces new challenges and com-
plexities, including the following (see Figure 2-1):

 » Many endpoints to monitor, scale, and secure

 » Inconsistent operational visibility and remediation

 » Disjointed security, auditing, and compliance

 » Polyglot fragmented libraries and code bloat

12 Service Mesh For Dummies, VMware Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

In a microservices architecture, latency is introduced between
services in the service chain, which will affect the entire applica-
tion and the user experience.

Another challenge is troubleshooting and identifying the root
cause of issues when they occur. This is usually done using tracing,
which allows you to understand the communication and transac-
tion flow of the applications. But in a distributed microservices-
based application, where do you look for the root cause when
issues arise? How can you know which log to search for the root
cause of a problem? Applications built in microservices archtec-
tures are composed of many different services, often written in
different coding languages. This is known as a polyglot application.
In such an environment, how do you troubleshoot issues in dif-
ferent development languages?

Before service mesh, there were various ways to address these
challenges — and there still are. For example, language-specific
libraries address issues such as encryption, service discovery,
and traffic management; likewise, an application programming
interface (API) gateway — which sits in the application path —
provides similar capabilities. But these projects have some chal-
lenges of their own. Libraries, for example, are not language and
platform agnostic, but are instead mostly focused on a specific
development language, like Java. A centralized solution such an
API gateway or northside proxies does not provide a full solution.

FIGURE 2-1: Microservices introduce lots of new opportunities — and
challenges.

CHAPTER 2 Service Mesh: A New Paradigm 13

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Introducing Service Mesh
A service mesh is an abstraction layer that takes care of the
following:

 » Service-to-service communication (service discovery and
encryption)

 » Observability (monitoring and tracing)

 » Resiliency (circuit breakers and retries)

Microservices should be all about business logic. Developers
should be able to focus their development work on coding the
“special sauce” in their apps for the business. For example, if a
microservice is a web server, it needs to fetch data and present
it. But a lot of maintenance or “housecleaning” work is needed
(see Figure 2-2) — things like service discovery and connection
details. A microservice that needs to communicate with other ser-
vices needs to know how to find them, how to define the connec-
tion details, and whether the connection is encrypted. You also
need to tell the service what to do in case of connection errors or
failures: Should it retry? If so, how many times? Also, you need a
way to detect latency and define where to send latency informa-
tion and what to do if latency is too high.

FIGURE 2-2: Necessary maintenance functions in a microservices architecture.

14 Service Mesh For Dummies, VMware Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Business logic is the purpose of the service, such as a web server
that fetches data and presents it as a web page.

However, none of this “housecleaning” work differentiates the
business, and it can’t be considered business logic. With a ser-
vice mesh, you can abstract these functions to a separate entity
called a proxy. The proxy sits in front of each microservice and
all communications are passed through it. The proxy is respon-
sible for connection details, traffic management, error and failure
handling, and collecting metrics for observability purposes. When
proxies talk with other proxies, you get a service mesh.

In Kubernetes, the proxy is implemented as a “sidecar.” The con-
tainers run in pods, where the sidecars act as “helper containers”
to the main container, which runs the business logic. In a service
mesh, the proxy runs as a sidecar (see Figure 2-3).

Service mesh projects like Istio, Linkerd, Consul, Kong, and
 Cilium have gained momentum over the past several years. Istio,
which was initiated by Google, currently has the most momentum
in the open-source, cloud-native space, with more than 19,500
stars, 6,400 commits, and 380 contributors in the Istio GitHub
repository and numerous companies building service mesh solu-
tions that involve Istio, including VMware, Avi Networks, Cisco,
OpenShift, NGINX, Rancher, Tufin Orca, Tigera, Twistlock, and
Aspen Mesh.

Projects like Istio, LinkerD, and others add a control plane to
manage the sidecar proxies. In Istio, for example, you can apply
a configuration to the mesh with YAML (“YAML Ain’t Markup
Language”) files, using a declarative API. This means you can
provide an end-state definition, rather than a series of steps.

FIGURE 2-3: A Layer 7 proxy, or “sidecar,” in a Kubernetes pod.

CHAPTER 2 Service Mesh: A New Paradigm 15

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

This makes the configuration of the communication nonpro-
prietary and easy to handle. The “housekeeping” code required
to handle communications, security, and retries — which is
 nondifferentiating to the business — is abstracted using the side-
car proxy, and developers can instead focus on writing business
logic that creates business value.

Developer time is very expensive — if not the most expensive
time in the business — so moving to a configurable abstraction
layer can save a lot of time — and money — for the business.

Istio’s architecture is divided into two levels: the data plane,
which is based on Envoy (most service mesh projects that use a
sidecar architecture utilize Envoy), and a control plane to manage
the proxies. With Istio, you inject the proxies into all the Kuber-
netes pods in the mesh.

Istio also uses Envoy proxies to provide access in and out of the
mesh, thereby providing a very clear demarcation line for the
entry and exit points of the mesh. Traffic coming into the mesh
or leaving it via an Envoy proxy that acts as an ingress or egress
gateway (or both), where traffic originates outside the service
mesh and goes via the egress gateway will return via the ingress
gateway.

For example, a service running inside the service mesh (for
 example, Service B) can originate traffic to external services (for
example, YouTube) internally (see Figure 2-4). You can easily
configure the service mesh to handle the way this traffic leaves
the service mesh via the egress gateway using a declarative defi-
nition (that is, an intended state).

FIGURE 2-4: Envoy proxies provide entry and exit points in the service mesh.

16 Service Mesh For Dummies, VMware Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The Istio control plane is composed of three main components
(see Figure 2-5):

 » Pilot: The pilot is responsible for “piloting” the mesh and
programming the envoy proxies with traffic management,
security, and more.

 » Mixer: The mixer acts as the aggregation point for all
telemetry in the mesh. The Envoy traffic is sent to the
mixer, where external tools can interact with it for
 observability and monitoring purposes.

 » Citadel: The citadel is the certificate authority (CA) for the
mesh. It’s responsible for providing the certificate (identity)
for all the microservices and is a key element in delivering
mutual transport layer security (mTLS) authentication and
encryption for traffic in flight in the mesh.

FIGURE 2-5: The Istio control plane consists of the pilot, mixer, and citadel.

CHAPTER 3 Service Mesh Use Cases 17

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 3

IN THIS CHAPTER

 » Managing traffic

 » Enabling observability

 » Ensuring security

Service Mesh Use Cases

Istio use cases tend to fall into three main areas: traffic manage-
ment, observability, and security. In this chapter, you explore
Istio service mesh use cases.

Traffic Management
The ability of Istio (discussed in Chapter 2) to enforce policy at
any point in the network enables a number of very useful traffic
control features, including traffic splitting, rate limiting, circuit
breaking, and programmable rollouts such as canary deployments.

The power of Istio lies in its ability to express configurations at
Layer 7, the Application Layer (see Figure 3-1). Decoupling traffic
flow from infrastructure in this way makes it an application con-
cern under the purview of the app owners. App owners, DevOps
engineers, and SREs understand the business context and the
needs of the app users, and they’re ultimately responsible for the
releases, application reliability, and customer experience, as well
as ensuring the platform can handle the demands of the apps.

Yet another advantage of Istio is that the developers don’t neces-
sarily have to understand the internals of Kubernetes to be able to
configure traffic rules at an application level.

18 Service Mesh For Dummies, VMware Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Network reliability
Istio is able to handle network failures in the service mesh auto-
matically and transparently, by retrying failed requests within
the parameters set up by the app owners (see Figure 3-2). They
can define the timeout budgets for retries and jitter thresholds
to restrict the impact of the increased traffic caused by retries on
upstream services.

If there’s a 503 Service Unavailable error because the server is
completely unavailable due to scheduled maintenance, the app
operator would need to make sure that the application has resil-
iency built in to handle the 503 errors returned from Envoy when
it stops retrying.

One of the main benefits of offloading the retries to the proxy is
that you can define the application resiliency settings between
services independently of the programming language, because
the configuration layer is language agnostic.

FIGURE 3-1: Istio functionality is implemented at Layer 7 (the Application
Layer) of the Open Systems Interconnection (OSI) stack.

CHAPTER 3 Service Mesh Use Cases 19

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Circuit breaking
A sudden and intense spike in traffic, such as a distributed
denial of service (DDoS) attack can quickly overload a network.
Microservices-based distributed applications would struggle to
process the backlog of requests coming all at once due to the
sudden spike in traffic.

In Istio, an app owner can set a threshold when a service is gen-
erating 503 errors to remove it from the load balancer pool. New
requests coming in will not be routed to the unhealthy service (see
Figure 3-3). This is known as circuit breaking, and it’s configured
by defining a connection pool of concurrent Transmission Control
Protocol (TCP) connections and pending HyperText Transfer Pro-
tocol (HTTP) requests.

Figure 3-4 shows an example of a YAML (“YAML Ain’t Markup
Language”) configuration file for Istio’s circuit-breaking features.

The circuit-breaking functionality in Istio is similar to Kubernetes
liveness and readiness checks where you can define thresholds for
load balancer ejection and readmission.

FIGURE 3-2: App owners can define parameters such as failed request retries.

20 Service Mesh For Dummies, VMware Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Rate limiting
Related to circuit breaking is rate limiting, a feature in Istio that
allows you to enforce limits on the rate of requests that match
certain criteria. This feature can be used to ensure that cer-
tain requests are not overused. This is analogous to the public

FIGURE 3-3: Traffic is not routed to the unhealthy service.

FIGURE 3-4: An example of a circuit breaker configuration YAML file for Istio.

CHAPTER 3 Service Mesh Use Cases 21

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

application programming interface (API) service, which will throt-
tle you back when you exceed a predefined rate of requests.

Defining rate limits involves specifying which parameters to
count, their maximum values, and the window of time in which
to enforce the limit. These counts need to be tracked centrally in
the cluster to ensure they aren’t exceeded. Rate-limiting checks,
therefore, happen in the Mixer on the data path, rather than in
Envoy. The Mixer can store these counts in memory (not recom-
mended in production) or in Redis.

Careful configuration of rate limits will ensure that all users have
fair access to Kubernetes resources.

A/B testing
Istio’s traffic routing can be useful for A/B testing. When testing
web applications, the app owners can test new features by send-
ing a subset of customer traffic to the instances hosting the new
features. They can then observe the telemetry and gain insights
into the user interactions — whether the users prefer one fea-
ture over another, or prefer an implementation of one service over
another.

Istio can be configured to direct traffic based on parameters such
as percentage weight, cookie value, query parameter, HTTP head-
ers, and so on.

A common use case for microservices A/B testing may include try-
ing out new features for a subset of users or geographical regions,
or testing an update on a reduced scale before a complete rollout.

It’s always possible to roll back to a stable release from the new
version if too many errors are detected. However, if testing new
features via A/B testing can negatively impact a running system,
the recommended approach would be to perform canary releases
instead.

Canary releases
Canary releases could be considered a special case of A/B testing
(discussed in the preceding section), in which the rollout happens
much more gradually.

22 Service Mesh For Dummies, VMware Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

A canary release begins with a “dark” deployment of the new ser-
vice version, in which the new service receives no traffic. If the
service is observed to start healthy, a small percentage of traffic
(for example, 1 percent) is directed to it (see Figure 3-5). Errors
are continually monitored as continued health is rewarded with
increased traffic, until the new service is receiving 100 percent of
the traffic. The old instances can then be gracefully shut down.

FIGURE 3-5: A canary release example in which 99 percent of the traffic is
routed to version 1.5 of the software and 1 percent of the traffic is routed to
version 2.0 of the software.

CHAPTER 3 Service Mesh Use Cases 23

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Istio traffic routing configuration can be used to perform canary
releases by programmatically adjusting the relative weighting of
traffic between service versions. Users would have to write a con-
trol loop to observe service health and adjust the amount of traffic
given to the new service. Successful canary rollouts depend on
being able to monitor application health.

Figure 3-6 shows an example of a YAML configuration file for
Istio’s traffic-splitting feature.

Traffic steering
Traffic-steering rules enable app owners to control where incom-
ing traffic will be sent based on application or web attributes
such as authentication (Jason to service A and Linda to service B),
 location (United Kingdom to service A and United States to ser-
vice B), device (watch to service A and mobile to service B), or any-
thing else that is passed in the application header. In Figure 3-7,
Android users are authenticating with service B located on Pod 3,
whereas iPhone users are directed to authenticate with service B
located on Pod 4.

Traffic steering has been done in previous architectures by hard-
coding the rules into the application and using software librar-
ies. It’s much easier to do traffic steering in Istio because of
the abstraction Istio offers and because it’s easy to change the
parameters in a YAML file.

FIGURE 3-6: An example of a traffic-splitting rule in YAML.

24 Service Mesh For Dummies, VMware Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

For example, if an app owner wants to direct traffic from one
location to the same location where the application is hosted,
the app owner can simply implement the rules in the YAML file.
For example, U.S. traffic is steered to the app hosted in North
America and European Union (EU) traffic is steered to the app
hosted in the EU.

Figure 3-8 shows an example of a YAML configuration file for
Istio’s traffic-steering feature.

FIGURE 3-7: A traffic-steering example.

CHAPTER 3 Service Mesh Use Cases 25

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Developers need to make sure that the information on which the
traffic decision is made is inserted in the HTTP headers.

Egress control
By default, Istio does not permit connections to services outside
the mesh. However, Istio provides two in-mesh ways to define
outbound connections to a permitted Uniform Resource Locator
(URL). Controlling egress using URLs provides an advantage over
legacy firewalling techniques using static Internet Protocol (IP)
ranges, because cloud-native apps are increasingly hosted using
IPs that dynamically change.

One example use case is a microservice app that performs read-
write actions on a database. The database is hosted on the pub-
lic cloud outside the service mesh without a static IP. The egress
needs to be configured so that the microservice app can connect
with the database outside the mesh. One way would be to whitelist
the entire IP range of the cloud provider, but this approach creates
potential security risks.

A more secure approach would be to create a dedicated Istio proxy
(also known as an egress gateway) through which all egress traf-
fic must pass in order to exit from the mesh. Using the gateway
provides additional controls, and you can use the Kubernetes net-
work policy to restrict all egress from the cluster except for the
traffic from the egress gateway.

FIGURE 3-8: A YAML file showing how to configure the traffic-steering rule for
two types of mobile users, Android and iPhone.

26 Service Mesh For Dummies, VMware Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Observability
Although service discovery is part of the load-balancing function-
ality of Istio as the data is coming from the proxies, observability
is a category on its own. Istio’s Pilot component consumes infor-
mation from the underlying platform service registry (that is,
Kubernetes) and provides a platform-independent service discov-
ery interface (see Figure 3-9). With this interface, tools like Kiali
and VMware NSX Service Mesh can provide service observability.

Metric collection
The Envoy proxies send metrics to the mixer and provide a way
of monitoring and understanding the behavior of the services (see
Figure 3-10).

FIGURE 3-9: Istio’s Pilot can discover new services and registers the new
service (B) into the platform.

CHAPTER 3 Service Mesh Use Cases 27

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The metrics generated by the Envoy proxies allow app owners to
understand app behavior such as the volume of traffic, the error
rates within the traffic, and the response times for requests. The
metrics also enable an understanding of how the service mesh
itself is behaving and its overall health. The metrics in Istio pro-
vide this level of observability.

Like all other configuration files in the service mesh, the collec-
tion of metrics is driven by a YAML configuration file. The met-
rics in Istio are divided into proxy-level metrics and service-level
metrics.

Distributed traces
Distributed tracing is a concept that has existed in application
programming for many years, but it’s particularly difficult to
achieve in a distributed microservices application. Istio supports

FIGURE 3-10: Envoy proxies send metrics to the mixer in Istio.

28 Service Mesh For Dummies, VMware Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

tracing by monitoring transactions as they flow through a mesh
and allows application owners to understand service dependen-
cies and the sources of latency within the service mesh.

Distributed tracing is implemented through the Envoy proxies,
which automatically generate trace spans on behalf of the applica-
tion. The developer needs to configure the application to forward
trace information. When tracing is required for troubleshooting,
the application operator can configure a tracing tool — such as
Zipkin, Jaeger, or others — to present and analyze the tracing
information and identify the root cause of latency or errors in the
application.

Security
Istio security use cases include mutual transport layer security
(mTLS) authentication and Istio authorization.

mTLS authentication
Istio’s service-to-service communication flows through the
Envoy proxies. The Envoy proxies can generate mTLS tunnels
between the services, and each service will have its own unique
certificate providing it an identity. The certificates are managed
by the Citadel component (the root certificate authority of the
mesh), which is also responsible for certificate rotation — a non-
trivial task for any organization, especially when done at scale
(see Figure 3-11). The encryption is done at Layer 7, which means
the payload is encrypted, not the traffic.

There are two types of encryption policies: restrictive, in which
the service is configured to not accept nonencrypted traffic, and
permissive, in which the service will fall back and accept nonen-
crypted traffic as needed.

FIGURE 3-11: mTLS authentication in Istio.

CHAPTER 3 Service Mesh Use Cases 29

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Istio authorization
Istio authorization is analogous to micro-segmentation at Layer 7.
Micro-segmentation is sometimes considered to be synonymous
with the security principle of “zero trust.” Micro- segmentation
means that no traffic will be allowed that is not explicitly permit-
ted (“zero trust”) by inspecting every request for access.

In software-defined networking (SDN) solutions like VMware NSX
Data Center, the distributed firewall inspects the packets based on
Layer 4 (Transport Layer) ports and also application signatures
(Layer 7), while the enforcement is done in Layer 4. In Istio, both
the control and enforcement are purely Layer 7.

Istio authorization provides namespace-level, service-level, and
method-level access control for services in the Istio mesh. Istio
can segment the services based on Layer 7 constructs, such as
remote procedure call (RPC) level authorization and role-based
access control (RBAC) with conditions.

The Istio documentation describes RPC-level authorization as
follows:

Authorization is performed at the level of individual RPCs.
Specifically, it controls “who can access my bookstore service”
or “who can access method getBook in my bookstore service.”
It is not designed to control access to application-specific
resource instances, like access to “storage bucket X” or access
to “3rd book on 2nd shelf.” Today this kind of application-
specific access control logic needs to be handled by the
application itself.

The RBAC with conditions method applies access control based on
user identity and a group of additional attributes. It’s the com-
bination of RBAC with the flexibility of attribute-based access
(ABAC).

CHAPTER 4 Recognizing Complexity Challenges in Service Mesh 31

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 4

IN THIS CHAPTER

 » Installing Istio and choosing a
deployment model

 » Enabling Istio service mesh capabilities
in a Kubernetes cluster

 » Looking at a configuration example

Recognizing Complexity
Challenges in Service
Mesh

The process of installing and configuring objects, under-
standing the architecture, and getting true value from a
service mesh takes time, and for now all the service meshes

still have some sharp edges that need to be smoothed out. The
technology is still on its way to being fully ready for huge produc-
tion environments. In the meantime, some vendors are trying to
solve this complexity and add value to the service mesh.

In this chapter, you learn how to install Istio and configure traffic
shifting for a simple A/B testing scenario and the complexities in
a single use case, let alone at scale.

Installing Istio
To get started with Istio, you need to install it into your Kuber-
netes cluster and get an external Internet Protocol (IP) address
assigned to the ingress gateway.

32 Service Mesh For Dummies, VMware Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Installing Istio has a few steps to it, which can be found at
https://istio.io/docs/setup. There are also different deploy-
ment models described at https://istio.io/docs/concepts/
deployment-models. These documents basically cover the way
Istio can currently be deployed.

The following are the supported Kubernetes cluster deployment
models:

 » Cluster models

 » Network models

 » Control plane models

Cluster models
The single Kubernetes cluster model is the most common deploy-
ment model (see Figure 4-1). Many organizations choose this
model because it provides the simplest way to use Istio and
Kubernetes, and organizations usually prefer to keep their Kuber-
netes clusters independent from one another.

FIGURE 4-1: A service mesh with a single cluster.

https://istio.io/docs/setup
https://istio.io/docs/concepts/deployment-models
https://istio.io/docs/concepts/deployment-models

CHAPTER 4 Recognizing Complexity Challenges in Service Mesh 33

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The multi-cluster deployment model is less common than the
single-cluster deployment model (see Figure 4-2). Stretching the
Istio service mesh across Kubernetes clusters allows for multi-
cluster use cases such as isolation between tenants, business
continuity (high availability and disaster recovery), and location
awareness, but having a single Istio control plane that is stretched
across multiple Kubernetes clusters eliminates the independence
of each cluster.

Network models
The single network model provides a true mesh where everything
is connected to each other (see Figure 4-3). Although this model
makes life simple for operating Istio, when deploying multiple
clusters this will usually not be the case.

A multi-network model is used in a larger-scale network
than a single flat network and provides support for use cases
such as using overlapping IP schemes of clusters, crossing of
administrative boundaries, fault tolerance, and compliance (see
Figure 4-4).

FIGURE 4-2: A service mesh with multiple clusters.

34 Service Mesh For Dummies, VMware Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

FIGURE 4-3: A service mesh with a single network.

FIGURE 4-4: A service mesh with multiple networks.

CHAPTER 4 Recognizing Complexity Challenges in Service Mesh 35

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Control plane models
From a control plane perspective, Istio supports multiple mod-
els as well. The single control plane is the simplest deployment
model and the easiest to stand up and maintain (see Figure 4-5).

A multi-cluster, shared control plane allows for multiple clusters,
using a single Istio control plane (see Figure 4-6). This provides
uniformity of service mesh across clusters with the simplicity of
a single control plane, but at the cost of having a single point of
failure.

Lastly, in a multi-cluster, multi-control plane (replicated) model
(see Figure 4-7), you need to set up replication between multiple
control planes and set the gateway in each mesh to allow control
plane traffic between them. Setup and maintenance are manual
processes, and this model also does not cover non-Istio service
meshes.

FIGURE 4-5: A service mesh with a single control plane.

36 Service Mesh For Dummies, VMware Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Detailed instructions for deploying a multi-cluster, multi-
control plane (replicated) model can be found at https://istio.
io/docs/setup/install/multicluster/gateways.

FIGURE 4-6: Two clusters sharing a single control plane.

FIGURE 4-7: A service mesh with control plane instances for each region.

https://istio.io/docs/setup/install/multicluster/gateways
https://istio.io/docs/setup/install/multicluster/gateways

CHAPTER 4 Recognizing Complexity Challenges in Service Mesh 37

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Whatever model is chosen, after Istio is deployed, you need to
enable the service mesh in the Kubernetes cluster. As described in
the architecture components of Istio, to enable the service mesh
capabilities you have to inject the Envoy proxy into every pod that
you want to be part of the mesh. You can decide if you want to
inject the sidecar to all namespaces or a specific namespace by
labeling the namespace.

After injecting the proxy, you need to create the different objects
that structure the mesh to manage the networking within and
outside the mesh.

The architecture has a clear entry point, and that’s the first object
created in the installation process. To create the environment to
run an app inside a mesh you need to create several objects: an
Istio Ingress Gateway, one or more VirtualServices, and zero or
more DestinationRules (see Figure 4-8).

If you want to change parameters to different services inside the
mesh, you have to create multiple roles inside a VirtualService,
create one VirtualService per application/developer team, or cre-
ate as many roles as services that need different parameters.

The complexity starts here, with the number of objects and
breaking point to the base structure of the mesh. Even though
the creation and management will probably be automated and
orchestrated, the number of failing points and the way that you
manage those points, currently by using declaration files, makes
operation of Istio difficult in large environments.

FIGURE 4-8: Objects in an Istio service mesh.

38 Service Mesh For Dummies, VMware Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

If there are multiple Kubernetes clusters, operators would have to
manage many Istio deployments independently and there would
be potentially hundreds of different declaration file configuration
files across the isolated service meshes.

A Traffic-Shifting Configuration Example
Let’s use the example of traffic shifting for a single service ver-
sion in a single app to demonstrate the complexity and failing
points that exist.

To progressively upgrade a service and avoid outages, a DevOps
engineer may want to route a portion of the traffic — say,
10 percent — to a specific new version of a service and the
remaining 90 percent of traffic to an older version.

In the example in Figure 4-9, we use the common Bookinfo app
from the Istio repository located at https://istio.io/docs/
examples/bookinfo.

After the installation, the first Ingress controller of the mesh is
created and an external IP is assigned to the service as the entry
point to everything that is being managed by Istio.

FIGURE 4-9: The Bookinfo application.

https://istio.io/docs/examples/bookinfo
https://istio.io/docs/examples/bookinfo

CHAPTER 4 Recognizing Complexity Challenges in Service Mesh 39

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Now, the DevOps engineer wants to route the traffic to a specific
version of the backend Review service. First, you need to config-
ure an internal Istio gateway (see Figure 4-10). This is a second
gateway that the first Ingress controller will route traffic to.

The gateway will route the traffic into a VirtualService. You need
to create a general VirtualService that will route traffic to the front
end of the app so that you can browse the app (see Figure 4-11).

After creating the basic structure of the networking for your app,
you can leverage the Layer 7 management capabilities and cre-
ate an additional VirtualService to control the internal network
inside the mesh and route some of the traffic to a specific ver-
sion of a specific service. In the example, 10 percent of the traffic
will be routed to v2 while all other traffic will still go to v1 (see
Figure 4-12).

Figure 4-13 shows an example of the configuration file for the
VirtualService you need to route part of the traffic. If you multi-
ply this configuration file by the amount of changes you need to
make, you see that you end up with a lot of failing points.

FIGURE 4-10: Configuring an internal gateway for the Bookinfo app.

40 Service Mesh For Dummies, VMware Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

FIGURE 4-12: A traffic-steering example.

FIGURE 4-11: Configuring a VirtualService to route traffic to the front end of
the app.

CHAPTER 4 Recognizing Complexity Challenges in Service Mesh 41

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

To create this example of a progressive upgrade, four objects
needed to be created:

 » External ingress gateway (Istio entry point)

 » Internal gateway (Bookinfo gateway)

 » Front-end VirtualService (Bookinfo VirtualService)

 » DestinationRules (Bookinfo DestinationRules)

These objects need to be maintained throughout the upgrade pro-
cess while changing the weight of traffic routed — and that’s for
just one service of one application.

There are many parameters (such as weight, application users,
destination rules, application service versions, and gateways) that
you can leverage, but you must also manage them in the decla-
ration files. Also, the one-to-one mapping between the service
mesh to a Kubernetes cluster will require you to manage multiple
meshes, multiplying the challenge.

FIGURE 4-13: A configuration file example.

42 Service Mesh For Dummies, VMware Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

In a scaled environment, creating multiple upgrades in the ver-
sion cadence of a modern app is pretty much impossible. For
example, Amazon is doing more than 1,000 upgrades an hour —
every 11.6 seconds something is being changed in the mesh. Think
about the operation behind that. And that doesn’t even address
scaling issues and other use cases that are complex to control and
manage with service mesh.

Although service mesh solves many of the challenges in connect-
ing and securing service-to-service communication, it also intro-
duces an order of complexity that enterprises are left to address
on their own. We explain how to overcome these challenges with
VMware NSX Service Mesh in Chapter 5.

CHAPTER 5 Transforming the Multi-Cloud Network with NSX Service Mesh 43

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 5

IN THIS CHAPTER

 » Learning the basics of NSX Service Mesh

 » Going beyond service-to-service
communication

 » Looking at the VMware NSX Service Mesh
architecture

 » Getting different service meshes to work
together

 » Exploring NSX Service Mesh use cases

Transforming the
Multi-Cloud Network
with NSX Service Mesh

In this chapter, you learn about VMware’s enterprise service
mesh offering, NSX Service Mesh. In the same way that VMware
abstracts physical compute in vSphere and physical networks in

NSX Datacenter, VMware is now abstracting the cloud with NSX
Service Mesh, part of the NSX suite.

Introducing NSX Service Mesh
A service mesh addresses challenges (discussed in Chapter 2)
associated with a microservices architecture. However, the ser-
vice mesh itself introduces new challenges (also discussed in
 Chapter 2) related to multiple Kubernetes cluster/multi-cloud
operations and the limited scope of most service meshes today,
which focus on services alone.

44 Service Mesh For Dummies, VMware Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

NSX Service Mesh solves these challenges and more. By abstract-
ing the service mesh from the physical boundaries of a single
Kubernetes cluster and a single cloud, and by extending the scope
from service-to-service communication to users-to-service-to-
data communication, NSX Service Mesh is able to control, secure,
and operate applications, no matter where their components are
deployed.

Increasing the Scope of the Mesh
All service mesh implementations are focused on bringing
 visibility, traffic management, and security to service-to-service
communications at Layer 7. But application flows are not limited
to interservice communications; users also access data (via those
services). In traditional applications running in on-premises
infrastructure, you manage access between application compo-
nents using IP addresses on the network and permissions that
are based on internal identity sources that are under your control.

In a multi-cloud, multi-platform environment, where you may
not have access to the underlying infrastructure, you need to
move up the stack to manage communication and access between
users, services, and data, by abstracting out the underlying physi-
cal infrastructure (see Figure 5-1).

FIGURE 5-1: Modern apps are deployed across multi-cloud and hybrid
environments.

CHAPTER 5 Transforming the Multi-Cloud Network with NSX Service Mesh 45

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

VMware is leading an effort in the open-source community to
extend the visibility and control of communication from just
service-to-service communications to include users, services,
and data. This effort includes work on the data services proxy
 filters, which will allow the Envoy proxy to decode the data wire
protocols and SQL queries. This allows NSX Service Mesh to have
visibility into the entire transaction all the way to the datastore.
With this visibility, access can be logged for auditing and security
purposes. When this level of visibility is achieved, policies can be
used to control access to the data (see Figure 5-2).

VMware NSX Service Mesh Architecture
VMware NSX Service Mesh uses Istio as a data plane abstraction
for Kubernetes workloads. When deploying Istio, it’s typically tied
to a single Kubernetes cluster. Istio users don’t stretch it across
more than one Kubernetes cluster, as most prefer each cluster to
be able to operate independently from other Kubernetes clusters.
For this reason, NSX Service Mesh acts as a control plane for many
data plane Istio deployments managing the life cycle of Istio from
onboarding to Day 2 and Day 3 operations. NSX Service Mesh only
handles the life cycle of the service mesh (Istio, in this case); it
does not handle the life cycle of Kubernetes. When onboarding a
new cluster on NSX Service Mesh, the service will perform the
deployment of a curated version of Istio, which is signed and
supported by VMware. This Istio deployment is the same as

FIGURE 5-2: VMware is working with the open-source community to extend
visibility and control in the service mesh to include users, services, and data.

46 Service Mesh For Dummies, VMware Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

the upstream Istio in every way, but it also includes an agent
that communicates with the NSX Service Mesh control plane.
Istio installation is not the most intuitive, but the onboarding
process of NSX Service Mesh simplifies the process significantly.

NSX Service Mesh acts as an abstraction layer on many data plane
service meshes. The solution applies the same concepts of service
mesh such as traffic control, security, and observability — not to
a single Kubernetes cluster or cloud, but across Kubernetes clus-
ters, clouds, and third-party service meshes.

The architecture is constructed of a local Istio data plane with its
own local control plane and a central control plane, which is the
NSX Service Mesh service (see Figure 5-3).

Before going into the underlying technology of NSX Service Mesh,
it’s important to first understand how this architecture is logi-
cally managed.

Introducing Global Namespaces
Global namespaces are the primary management construct within
NSX Service Mesh and one of its main differentiation points.
Kubernetes provides service discovery and scheduling, and
service mesh does this in a fully distributed way, but what about
scenarios in which there is more than one Kubernetes cluster
where services are running?

FIGURE 5-3: The NSX Service Mesh architecture.

CHAPTER 5 Transforming the Multi-Cloud Network with NSX Service Mesh 47

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

There are many reasons and use cases for deploying multiple
Kubernetes clusters rather than a single huge cluster, including
the following:

 » The difficulty of updating large Kubernetes clusters: You
need to coordinate more activities between the applica-
tions and the tenant — this complexity is the reason many
organizations are moving from a monolith to microservices
in the first place.

 » Isolation between multiple tenants: In Kubernetes, the
tenancy construct is the namespace, which is a folder (a
binder, if you will) of logical constructs that are part of the
same app or tenant. However, namespaces are not a good
tenancy model because they don’t provide any isolation
between tenants. If true multi-tenancy is required, you may
need to utilize multiple clusters.

 » High availability: You may also want to distribute your
application components on multiple clusters for high-
availability purposes. In this case, you could run your
application on multiple Kubernetes clusters in the same
region and have a local load balancer between them to
provide high availability, or you could deploy multiple
Kubernetes clusters across regions with a global load
balancer for disaster recovery and disaster avoidance.

 » Separating stateful and stateless services: Data in
stateful services is handled differently from data in state-
less services and may, therefore, need to be separated
in multiple Kubernetes clusters.

Istio supports multi-cluster Kubernetes, but most deployments
have a one-to-one relationship with the Kubernetes cluster,
because organizations want to keep their clusters indepen-
dent from one another. With NSX Service Mesh, you can create
resource groups, such as users in user groups, data in data groups,
and services in service groups. The system can do this for you
automatically based on user-defined criteria. By arranging these
objects in groups, you can then create a “virtual sandbox” for an
app, which includes all its components without regard to where
these components reside — whether in multiple Kubernetes clus-
ters, sites, or clouds. This is the global namespace (GNS), which
is like a namespace in Kubernetes (see Figure 5-4), but instead

48 Service Mesh For Dummies, VMware Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

of being tied to a Kubernetes cluster, VMware NSX Service Mesh
elevates the GNS from the physical world. Each NSX Service Mesh
GNS manages its own service discovery, observability, encryption,
policies, and service-level agreements (SLAs) (see Figure 5-5).

Federation and Intra-Service Mesh
Interoperability

NSX Service Mesh has a layered architecture with a federated
approach. The layers of the solution include the following:

 » The service itself: This is the top control plane for the entire
service mesh.

FIGURE 5-4: Global namespaces in Kubernetes clusters.

FIGURE 5-5: Global namespaces in NSX Service Mesh.

CHAPTER 5 Transforming the Multi-Cloud Network with NSX Service Mesh 49

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » The control plane: The NSX Service Mesh is built as a Software
as a Service (SaaS) offering (an on-premises version will be
available in the future). This service communicates and manages
the underlying data plane service mesh components.

This layered architecture is fine for a service mesh under NSX
control, but that isn’t always the case. There may be application
components in another service mesh, such as Google Anthos,
HashiCorp Consul Connect, or some other service mesh (see
Figure 5-6). Also, Istio is a great data plane service mesh and has
a lot of momentum in the Kubernetes space, but it isn’t the only
one and it doesn’t cover all types of workloads. There are also
service meshes such as Cilium, Consul by HashiCorp, Linkerd, and
so on. Organizations need to be able to manage their application
components no matter where those components reside.

VMware is leading a new open-source service mesh interopera-
tion project that is called Hamlet (https://github.com/vmware/
hamlet).

This project is a collaboration between VMware, Google Cloud’s
Anthos, HashiCorp, and Pivotal and is a recognition that service
mesh has become a vital part of microservices infrastructure.

Hamlet facilitates federation of service discovery between differ-
ent service meshes of potentially different vendors. Through an
API, service meshes can be interconnected to deliver the asso-
ciated benefits of observability, control, and security across

FIGURE 5-6: Application components may reside in multiple service mesh
locations.

https://github.com/vmware/hamlet
https://github.com/vmware/hamlet

50 Service Mesh For Dummies, VMware Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

different organizational unit boundaries, and potentially across
different products and vendors (see Figure 5-7).

With service mesh interoperation, where each service mesh exists
within a different and untrusted organizational unit boundary
(and hence workloads are loosely coupled), each mesh can be of
the same or different vendors, can have the same or different con-
trol and data plane implementations, be single or multi-cluster,
and can provide the same or different functionality as a product
while still providing interoperation across the meshes. This is the
problem that Hamlet solves.

NSX Service Mesh Use Cases
There are many use cases today for NSX Service Mesh and future
use cases that may not yet have been imagined.

Multi-cloud and hybrid cloud patterns
There are many reasons why organizations deploy an application
in multiple Kubernetes clusters and multiple clouds, whether on-
premises, public, or hybrid, including the following:

 » Separation of duties (services are developed by different
business units)

 » Separation of stateless and stateful services to different
Kubernetes clusters

 » Services consumption (using a data service in one cloud and
an app service in a different cloud)

FIGURE 5-7: Service mesh interoperation across several different
 organizational unit boundaries.

CHAPTER 5 Transforming the Multi-Cloud Network with NSX Service Mesh 51

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Business continuity

 » Reduced blast radius and more

With NSX Service Mesh, you can apply policies on the GNS level,
such as security and traffic management policies. You also get the
observability you need to operate and troubleshoot your appli-
cations and act upon any service-level objective (SLO) policy
violations.

Business continuity
The general practice for business continuity with Kubernetes-
deployed apps and cloud-native apps is to deploy the app in more
than one cluster, either in the same region for high availability
(HA) or a remote region for disaster recovery (DR), with a load
balancer between them to direct traffic to both clusters, usually
to both in an active-active configuration. In NSX Service Mesh,
you can group these clusters into a GNS, integrate them with load
balancing (local or global load balancing), and program it auto-
matically to redirect traffic in case of failure. NSX Service Mesh
can visualize the GNS configuration and traffic flows between the
clusters for faster detection of health issues in the cluster.

End-to-end mutual transport
layer security (mTLS)
Achieving end-to-end encryption for in-flight traffic is not easy
but, in many cases, it’s required for regulatory purposes. This
requires a top-level CA that will provide a trusted identity to each
node on the network. In the case of micro-services architecture,
those nodes are the pods that run the services — and there are
a lot of them. Istio can set up end-to-end mTLS encryption
 utilizing the CA function called Citadel. Citadel will manage the
certificates for the services and will automatically rotate them
every 90 days.

NSX Service Mesh builds upon this capability in Istio and expands
it across multiple clusters and clouds — and even service meshes.
The implementation of end-to-end encryption of in-flight traffic
is applied at the GNS level, where you can apply an encryption pol-
icy that also supports different settings, such as faster certificate
rotation than the default setting in Istio, or setting up permissive
and restrictive policies.

52 Service Mesh For Dummies, VMware Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Rolling upgrades at scale
When upgrading microservices through a canary upgrade or
blue-green upgrade, you introduce a new version of a service
side-by-side with the old version, and then move a small per-
centage of traffic over to the new version and monitor it for errors
and latency. If the new service is working fine, you then move
some more traffic over until 100 percent of your users are using
the new version. At that point, you can decommission the old
 version of the service.

As we describe in previous chapters, this type of upgrade can be
performed relatively easily with Istio using a simple YAML (“YAML
Ain’t Markup Language”) file that defines the routing rules
to send a percentage of traffic to the new service (split traffic).
However, when you need to perform dozens, or even hundreds, of
such upgrades a day it’s no longer such an easy task. How do you
manage these upgrades, monitor them, and make changes at
scale? NSX Service Mesh provides an easy way to manage multiple
rolling upgrades from a single console and automatically man-
age it across Istio deployments. By defining a single or multiple
 service upgrade for a GNS, you can define the rules that determine
how much traffic to shift and the steps to take, as well as what
to do in case of errors or failures. You can then monitor all your
upgrades from a single dashboard.

You can also test a version by simulating an upgrade without
going “all in” and switching out versions.

Predicting end-to-end response time
Achieving application SLAs in a distributed architecture can be
very complex and challenging. If latency goes up in your appli-
cation because of a service load that goes up in the chain, just
autoscaling it out (deploying more instances of it) may cause an
adverse effect on the entire application due to the ripple effect
(one service scale creates pressure on downstream services). It’s
even more complicated when you’re doing this across multiple
clouds because you need to consider cross-cloud latencies and be
able to look at the health of all the services in the application ser-
vice chain (see Figure 5-8).

CHAPTER 5 Transforming the Multi-Cloud Network with NSX Service Mesh 53

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

NSX service mesh allows you to assign an end-to-end latency SLA
policy to an application and to automatically optimize and self-
heal distributed microservices applications to achieve the SLA.

VMware NSX products and solutions are not bound to any spe-
cific type of workload or cloud. NSX Service Mesh will continue
to encompass additional types of workloads beyond Kuber-
netes and Istio. It’s aimed to be extended to support virtual
machines (VMs), as well as SaaS and Function as a Service (FaaS)
in the future. The NSX Service Mesh scope is broader than just
service-to-service communications on Kubernetes and extends to
include users, data, and services across Kubernetes clusters and
clouds, as well as service meshes.

FIGURE 5-8: Service chain map example.

CHAPTER 6 Ten (Or So) Resources to Help You Get Started with Service Mesh 55

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 6

IN THIS CHAPTER

 » Exploring Istio online resources and
other books

 » Learning from other users

 » Getting hands-on experience with labs
and how-to guides

 » Taking online courses and attending
conferences

 » Checking out podcasts

 » Working with VMware resources

Ten (Or So) Resources
to Help You Get Started
with Service Mesh

Ready to get started? We’ve put together the following list of
materials and tutorials to help you enhance your under-
standing of Istio and VMware NSX Service Mesh.

Online Resources
The Istio project publishes a wide range of resources to help you
get grounded on the project and keep up with the latest informa-
tion. Check out the following resources:

 » https://istio.io/docs

 » https://github.com/istio/istio

https://istio.io/docs
https://github.com/istio/istio

56 Service Mesh For Dummies, VMware Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Enterprises are deploying Kubernetes on-premises and in pub-
lic clouds, and there’s a real need to federate between services
meshes. Check out the following online resources to learn about
service mesh interoperability between Kubernetes clusters:

 » Open Source Service Mesh Interoperation: https://
blogs.vmware.com/networkvirtualization/2019/08/
new-open-source-service-mesh-interoperation-
collaboration.html

 » Simplify Hybrid Deployments with VMware NSX
Service Mesh and Google Cloud Services: https://
youtu.be/4iYaF4nBM_o

 » How SPIFFE Helps Istio in Service Mesh Federation:
https://youtu.be/SCBksDnA2rU

Discussion Groups
Join a discussion group to post questions and actively contribute
to the Istio project and follow @Istio on Twitter:

 » https://discuss.istio.io

 » https://twitter.com/istiomesh

Books
When you’re ready to take a deeper dive into service mesh, why
not get a blueprint from technical experts to help you understand
what’s going on “under the hood”?

 » Istio in Action, by Christian E. Posta

 » Mastering Service Mesh Architecture, by Anjali Khatri and
Vikram Khatri

 » Istio: Up and Running: Using a Service Mesh to Connect, Secure,
Control, and Observe, by Lee Calcote and Zach Butcher

https://blogs.vmware.com/networkvirtualization/2019/08/new-open-source-service-mesh-interoperation-collaboration.html
https://blogs.vmware.com/networkvirtualization/2019/08/new-open-source-service-mesh-interoperation-collaboration.html
https://blogs.vmware.com/networkvirtualization/2019/08/new-open-source-service-mesh-interoperation-collaboration.html
https://blogs.vmware.com/networkvirtualization/2019/08/new-open-source-service-mesh-interoperation-collaboration.html
https://youtu.be/4iYaF4nBM_o
https://youtu.be/4iYaF4nBM_o
https://youtu.be/SCBksDnA2rU
https://discuss.istio.io
https://twitter.com/istiomesh

CHAPTER 6 Ten (Or So) Resources to Help You Get Started with Service Mesh 57

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

User Stories
Many enterprise users have taken the journey from Kubernetes to
service mesh. Start your own journey by learning from others who
have deployed service mesh in production:

 » The Life of a Packet Through Istio: www.infoq.com/
presentations/life-packet-istio

 » Trulia blog: Microservice Observability with Istio:
www.trulia.com/blog/tech/microservice-
observability-with-istio

 » Autotrader UK: Using Istio to increase agility for the
United Kingdom’s largest automotive marketplace:
https://cloud.google.com/customers/auto-
trader-uk

 » Lyft’s Envoy: From Monolith to Service Mesh: www.
microservices.com/talks/lyfts-envoy-monolith-
service-mesh-matt-klein

 » Namely: A Crash Course For Running Istio: https://
medium.com/namely-labs/a-crash-course-for-running-
istio-1c6125930715

 » Pinterest: Running Envoy at the Edge: https://youtu.
be/4x5WjxAMvKY

 » eBay: Kubernetes and Istio on Google Kubernetes
Engine: https://video.cube365.net/c/908977

 » Ygrene Energy Fund: Using Istio’s Mixer for Network
Request Caching: www.youtube.com/watch?
v=x1SomOy431I

Interactive Labs
Ready to go get some hands-on experience? Try these interactive
labs to get a virtual service mesh experience:

 » Katacoda: www.katacoda.com/courses/istio

 » VMware: https://nsx.techzone.vmware.com/
kubernetes-nsx

https://www.infoq.com/presentations/life-packet-istio
https://www.infoq.com/presentations/life-packet-istio
https://www.trulia.com/blog/tech/microservice-observability-with-istio
https://www.trulia.com/blog/tech/microservice-observability-with-istio
https://cloud.google.com/customers/auto-trader-uk
https://cloud.google.com/customers/auto-trader-uk
https://www.microservices.com/talks/lyfts-envoy-monolith-service-mesh-matt-klein
https://www.microservices.com/talks/lyfts-envoy-monolith-service-mesh-matt-klein
https://www.microservices.com/talks/lyfts-envoy-monolith-service-mesh-matt-klein
https://medium.com/namely-labs/a-crash-course-for-running-istio-1c6125930715
https://medium.com/namely-labs/a-crash-course-for-running-istio-1c6125930715
https://medium.com/namely-labs/a-crash-course-for-running-istio-1c6125930715
https://youtu.be/4x5WjxAMvKY
https://youtu.be/4x5WjxAMvKY
https://video.cube365.net/c/908977
https://www.youtube.com/watch?v=x1SomOy431I
https://www.youtube.com/watch?v=x1SomOy431I
https://www.katacoda.com/courses/istio
https://nsx.techzone.vmware.com/kubernetes-nsx
https://nsx.techzone.vmware.com/kubernetes-nsx

58 Service Mesh For Dummies, VMware Special Edition

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

How-To Guides
The best way to learn a new technology is to get hands-on experi-
ence. These step-by-step resources will help you get started:

 » Install Istio on any Kubernetes Cluster: https://istio.
io/docs/setup/install/kubernetes

 » Install Istio on Minikube: https://dzone.com/articles/
istio-service-mesh-the-step-by-step-guide-part-2-t

Online Courses
Why not take a class to enrich your understanding of service
mesh? There are many free and low-cost options, including the
following:

 » Linux Academy: https://linuxacademy.com/course/
service-mesh-with-istio-part-1

 » Udemy: www.udemy.com/istio-service-mesh-for-
cloud-native-apps-on-kubernetes

 » Lynda: www.lynda.com/Kubernetes-tutorials/
Kubernetes-Service-Mesh-Istio/751332-2.html

Conferences and Meetups
Join a local Meetup group on service mesh at www.meetup.com/
topics/service-mesh.

Engage in dialog with the Istio user community at www.meetup.
com/topics/istio.

The Linux Foundation hosts a vendor-neutral conference on ser-
vice mesh. Find out more at https://events.linuxfoundation.
org/events/servicemeshcon-2019.

https://istio.io/docs/setup/install/kubernetes
https://istio.io/docs/setup/install/kubernetes
https://dzone.com/articles/istio-service-mesh-the-step-by-step-guide-part-2-t
https://dzone.com/articles/istio-service-mesh-the-step-by-step-guide-part-2-t
https://linuxacademy.com/course/service-mesh-with-istio-part-1
https://linuxacademy.com/course/service-mesh-with-istio-part-1
https://www.udemy.com/istio-service-mesh-for-cloud-native-apps-on-kubernetes
https://www.udemy.com/istio-service-mesh-for-cloud-native-apps-on-kubernetes
https://www.lynda.com/Kubernetes-tutorials/Kubernetes-Service-Mesh-Istio/751332-2.html
https://www.lynda.com/Kubernetes-tutorials/Kubernetes-Service-Mesh-Istio/751332-2.html
https://www.meetup.com/topics/service-mesh
https://www.meetup.com/topics/service-mesh
https://www.meetup.com/topics/istio
https://www.meetup.com/topics/istio
https://events.linuxfoundation.org/events/servicemeshcon-2019
https://events.linuxfoundation.org/events/servicemeshcon-2019

CHAPTER 6 Ten (Or So) Resources to Help You Get Started with Service Mesh 59

These materials are © 2020 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Podcasts
Listen to podcasts on service mesh:

 » www.infoq.com/ServiceMesh/podcasts

 » www.se-radio.net/2019/03/se-radio-episode-361-
daniel-berg-on-istio-service-mesh

https://www.infoq.com/ServiceMesh/podcasts
https://www.se-radio.net/2019/03/se-radio-episode-361-daniel-berg-on-istio-service-mesh
https://www.se-radio.net/2019/03/se-radio-episode-361-daniel-berg-on-istio-service-mesh

http://Dummies.com

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book

	Chapter 1 The Rise of Microservices and Cloud-Native Architecture
	Recognizing the Need for Agility
	Understanding That Application Architectures Are Changing
	Service-oriented architecture
	Microservices

	Seeing That Distributed Applications Require a Reliable Network
	Looking at How Kubernetes and Microservices Work Together

	Chapter 2 Service Mesh: A New Paradigm
	Identifying Challenges in Microservices Architectures
	Introducing Service Mesh

	Chapter 3 Service Mesh Use Cases
	Traffic Management
	Network reliability
	Circuit breaking
	Rate limiting
	A/B testing
	Canary releases
	Traffic steering
	Egress control

	Observability
	Metric collection
	Distributed traces

	Security
	mTLS authentication
	Istio authorization

	Chapter 4 Recognizing Complexity Challenges in Service Mesh
	Installing Istio
	Cluster models
	Network models
	Control plane models

	A Traffic-Shifting Configuration Example

	Chapter 5 Transforming the Multi-Cloud Network with NSX Service Mesh
	Introducing NSX Service Mesh
	Increasing the Scope of the Mesh
	VMware NSX Service Mesh Architecture
	Introducing Global Namespaces
	Federation and Intra-Service Mesh Interoperability
	NSX Service Mesh Use Cases
	Multi-cloud and hybrid cloud patterns
	Business continuity
	End-to-end mutual transport layer security (mTLS)
	Rolling upgrades at scale
	Predicting end-to-end response time

	Chapter 6 Ten (Or So) Resources to Help You Get Started with Service Mesh
	Online Resources
	Discussion Groups
	Books
	User Stories
	Interactive Labs
	How-To Guides
	Online Courses
	Conferences and Meetups
	Podcasts

	EULA

