
Analyzing Machine Datawith Datadog

Get started log management
with Datadog

Datadog Log Management: Rapid Troubleshooting

Datadog Log Management: Full observability

Datadog Log Management: Seamless Integration

Datadog Log Management: Customizable Processing

Datadog Log Management: Visualization and Alerting

Sending Logs to Datadog

1. Sending logs manually
2. Send logs from a file

Sending Logs to Datadog: Sending logs manually
The secure TCP endpoint is intake.logs.datadoghq.com(or port 10514 for nonsecure connections).

telnet intake.logs.datadoghq.com 10514
<DATADOG_API_KEY> Plain text log sent through TCP

telnet intake.logs.datadoghq.com 10514
<DATADOG_API_KEY> {"message":"JSON formatted log sent through TCP", "ddtags":"env:dev", "ddsource":"terminal",
"hostname":"gs-hostame", "service":"user"}

The TCP endpoint is not supported for this site -
us5.datadoghq.com.

curl -X POST "https://http-intake.logs.us5.datadoghq.com/api/v2/logs" \
-H "Content-Type: application/json" \
-H "DD-API-KEY: 061585f627bb034f27fc61cec6a35f3b" \
-d @- << EOF
[

{
"ddsource": "nginx",
"ddtags": "env:staging,version:5.1",
"hostname": "i-012345678",
"message": "2019-11-19T14:37:58,995 INFO [process.name][20081] Hello World",
"service": "payment"

}
]
EOF

- Install the Datadog Agent

- Verify Datadog Agent Status and Look for "Logs Agent" which is not running.
$ sudo datadog-agent status

- Enable log collection
To enable log collection with the Agent, edit the datadog.yaml configuration file located at /etc/datadog-agent/datadog.yaml and set logs_enabled:true

- Monitor a custom file
$ touch log_file_to_monitor.log
$ echo "First line of log" >> log_file_to_monitor.log
$ sudo mkdir /etc/datadog-agent/conf.d/custom_log_collection.d/
$ sudo touch /etc/datadog-agent/conf.d/custom_log_collection.d/conf.yaml
logs:

- type: file
path: /home/ubuntu/log_file_to_monitor.log
source: custom
service: user

$ sudo service datadog-agent restart

- Validation. Verify Dsudo datadog-agent status
atadog Agent Status and Look for "Logs Agent" which is running.
$
- Add new logs to the file
$ echo "New line of log in the log file" >> log_file_to_monitor.log

Sending Logs to Datadog: Send logs from a file

Explore Log

Log Explorer: Discover the Log Explorer view, and how to add Facets and
Measures.
Search: Search through all of your logs.
Live Tail: See your ingested logs in real time across all your environments.
Analytics: Perform Log Analytics over your indexed logs.
Patterns: Spot Log Patterns by clustering your indexed logs together.
Saved Views: Use Saved Views to automatically configure your Log Explorer.

Log Explorer

Log Explore: Filters Log

The search filter consists of a timerange and a search query mixing key:value
and full-text search. For example, the search query service:payment
status:error rejected over a Past 5 minutes timerange:

Log Explore: Aggregate and Measure
Aggregate queried logs into higher-level entities in order to derive or consolidate
information. Logs can be valuable as individual events, but sometimes valuable
information lives in a subset of events. In order to expose this information, aggregate
your logs. Aggregations are supported for indexed logs only

Log Explore: Aggregate -> Fields
With fields aggregation, all logs matching the query filter are aggregated into groups
based on the value of one or multiple log facets. On top of these aggregates, you can
extract the following measures:

- count of logs per group
- unique count of coded values for a facet per group
- statistical operations (min, max, avg, and percentiles) on numerical values of a facet per
group

Log Explore: Aggregate -> Patterns
With pattern aggregation, logs that have a message with similar structures, belong to
the same service and have the same status are grouped altogether. The patterns view is
helpful for detecting and filtering noisy error patterns that could cause you to miss other
issues:

Log Explore: Aggregate -> Transactions
Transactions aggregate indexed logs according to instances of a sequence of events, such as a user session
or a request processed across multiple micro-services. For example, an e-commerce website groups log
events across various user actions, such as catalog search, add to cart, and checkout, to build a
transaction view using a common attribute such as requestId or orderId.

Log Explore: Aggregate -> Visualize

Lists - The columns displayed in list of aggregates are columns derived from the
aggregation.

Timeseries - Visualize the evolution of a single measure (or a facet unique count of
values) over a selected time frame, and (optionally) split by an available facet.

Toplists - Visualize the top values from a facet according to the chosen measure.

Nested tables - Visualize the top values from a facet according to a chosen measure
(the first measure you choose in the list), and display the value of additional measures
for elements appearing in this table.

Export - At any moment, and depending on your current aggregation, export your
exploration as a: Saved View, Dashboard widget, Monitor, Metric, CSV & Share

Search Log

Search Syntax

A query filter is composed of terms and operators.

There are two types of terms:

• A single term is a single word such as test or hello.
• A sequence is a group of words surrounded by double quotes, such as "hello dolly".

Search Syntax: AND OR

Search Syntax: Autocomplete

Search Syntax: Escaping of special characters

Search Syntax: Attributes search
Message attribute search
To search for logs that contain user=JaneDoe in the message attribute use the following
search:

user\=JaneDoe

Facets search
To search on a specific attribute, first add it as a facet and then add @ to specify you
are searching on a facet. For instance, if your facet name is url and you want to filter on
the url value www.datadoghq.com, enter:

@url:www.datadoghq.com

Search Syntax: Attributes search

Search Syntax: Wildcards

Search Syntax: Wildcards

Search Syntax: Numerical values

Search Syntax: Tags

Forwarding / Flushing Metrics to Datadog Cloud from
restricted outbound traffic
- Using a web proxy, such as Squid or Microsoft Web Proxy, that is
already deployed to your network
- Using HAProxy (if you want to proxy more than 16-20 Agents
through the same proxy)
- Using the Agent as a proxy (for up to 16 Agents per proxy, only
on Agent v5)
- Using Prometheus Pushgateway - Refer -
https://openapm.io/landscape/collector/prometheus-push-
gateway

Pipelines

Datadog automatically parses JSON-formatted logs.

When logs are not JSON-formatted, you can add
value to your raw logs by sending them through a
processing pipeline.

What is Pipelines?

Pipelines take logs from a wide variety of formats and
translate them into a common format in Datadog.

Implementing a log pipelines and processing strategy is
beneficial as it introduces an attribute naming convention
for your organization.

What is Pipelines?

With pipelines, logs are parsed and enriched by chaining
them sequentially through processors. This extracts
meaningful information or attributes from semi-structured
text to reuse as facets.
Each log that comes through the pipelines is tested against
every pipeline filter. If it matches a filter, then all the
processors are applied sequentially before moving to the
next pipeline.

What is Pipelines?

Processors

Processors
Grok parser
Log date remapper
Log status remapper
Service remapper
Log message remapper
Remapper
URL parser
User-Agent parser
Category processor
Arithmetic processor
String builder processor
GeoIP parser
Lookup processor
Trace remapper

https://docs.datadoghq.com/logs/log_configuration/processors

Pipelines Workflow

Match Parse Filter

Step 1 – Know a Log Pattern

Step 2 – Understand a Pattern & Parsing Rule

Step 3 – Copy Parsing Rule & Pattern

Step 4 – Navigate to Pipeline

Step 5 – Understand a Pattern & Parsing Rule

Step 6 – Understand a Pattern & Parsing Rule

Step 8 – Results - Before

Step 9 – Results - After

