October 28, 2020

A Beginner’s Guide to
eBPF Programming X eBPF

Summit

Liz Rice @lizrice

VP Open Source Engineering, Aqua Security

Run custom code in the kernel

@lizrice I:' QqUQ

userspace

syscalls

eBPF program

@lizrice L QC]UO

Q man bpf

EBPFIPrograms can be written in a FesStrictediClthat is compiled (using

the clang compiler) into EBPFIBYtecode. Various features are omitted
from this restricted C, such as loops, global variables, variadic

functions, floating-point numbers, and passing structures as function
arguments.

@lizrice l.' OC]UO

Q man bpf

EBPFIPrograms can be written in a FesStrictediClthat is compiled (using

the clang compiler) into EBPFIBYtecode. Various features are omitted
from this restricted C, such as loops, global variables, variadic

functions, floating-point numbers, and passing structures as function
arguments.

[EBPFPHEIPErFURCEIONS | are used by eBPF programs to interact with the

system, or with the context in which they work. For instance, they can
be used to print debugging messages...

bpf_trace_printk()
bpf_get_current_uid_gid()

@lizrice l.' OC]UO

Q man bpf

Maps are a generic data structure for storage of different types of

data. They allow between eBPF kernel programs, and also
between ,

@lizrice l.' OC]UO

Q man bpf

Maps are a generic data structure for storage of different types of

data. They allow between eBPF kernel programs, and also
between ,

eBPF programs can be EftacheditoNdiffOrentISVEnts .

@lizrice L) QqUQ

bpftrace

bpftrace is a high-level tracing language for Linux enhanced Berkeley Packet Filter (eBPF) available in recent Linux
kernels (4.x). bpftrace uses LLVM as a backend to compile scripts to BPF-bytecode and makes use of BCC for
interacting with the Linux BPF system, as well as existing Linux tracing capabilities: kernel dynamic tracing
(kprobes), user-level dynamic tracing (uprobes), and tracepoints. The bpftrace language is inspired by awk and C,
and predecessor tracers such as DTrace and SystemTap. bpftrace was created by Alastair Robertson.

To learn more about bpftrace, see the Reference Guide and One-Liner Tutorial.

One-Liners

The following one-liners demonstrate different capabilities:

Files opened by process
bpftrace -e 'tracepoint:syscalls:sys_enter_open { printf("%s %s\n", comm, str(args->filename)); }'

Syscall count by program
bpftrace -e 'tracepoint:raw_syscalls:sys_enter { @lcomm] = count(); }'

Read bytes by process:
bpftrace -e 'tracepoint:syscalls:sys_exit_read /args—>ret/ { @[comm] = sum(args->ret); }'

Read size distribution by process:
bpftrace —-e 'tracepoint:syscalls:sys_exit_read { @[comm] = hist(args->ret); }'

@lizrice

L) Oquo

Show per-second syscall rates:
bpftrace —e 'tracepoint:raw_syscalls:sys_enter { @ = count(); } interval:s:1 { print(@); clear(@);

@lizrice

Explore bpf syscalls in bpftrace

O QqQuUQ

eBPF programs & maps

bpf (BPF_PROG_LOAD, ..)
bpf (BPF_MAP_CREATE, ..)

@lizrice £| QqUQ

Attach custom code to an event

bpf (BPF_PROG_LOAD, ..) = x
perf_event_open(..) = y
ioctl(y, PERF_EVENT_IOC_SET_BPF, x)

@lizrice £| QqUQ

eBPF hello world

@lizrice l:' QqUQ

#!/usr/bin/python
from bcc import BPF

prog -
int helloworld(void *ctx) {
bpf_trace_printk("Hello world\\n");

return 0;

}

b = BPF(text=prog)
clone = b.get_syscall_fnname("clone")

b.attach_kprobe(event-clone, fn_name-"helloworld")

b.trace_print()

#!/usr/bin/python

from bcc import BPF

from time import sleep

prog -
BPF_HASH(clones) ;

int hello_world(void *ctx) {

}

u64 uid;
u64 counter = 9;
ub4 *p;
uid = bpf_get_current_uid_gid() & OxFFFFFFFF;
p = clones.lookup(&uid);
if (p !'=0) {
counter = *p;
}
counter++;
clones.update(&uid, &counter);

return 0;

b = BPF(text=prog)
clone = b.get_syscall_fnname("clone")

b.attach_kprobe(event=clone, fn_name-="helloworld")

while True:
sleep(2)
g -
if len(b["clones"].items()):
for k,v "clones"].items():
s += "ID {}: {}\t".format(k.value, v.value)
print(s)
else

print("No entries yet")

@lizrice l:' QqUQ

verifier

@lizrice l:' QqUQ

verifier

@lizrice l:' QqUQ

Thank you

github.com/lizrice/ebpf-beginners

WA N
! \!
\

@lizrice

