
A Beginner’s Guide to
eBPF Programming

Liz Rice @lizrice

VP Open Source Engineering, Aqua Security

October 28, 2020

@lizrice

Run custom code in the kernel

@lizrice

userspace

kernel

syscalls

app

eBPF program

@lizrice

man bpf

eBPF programs can be written in a restricted C that is compiled (using
the clang compiler) into eBPF bytecode. Various features are omitted
from this restricted C, such as loops, global variables, variadic
functions, floating-point numbers, and passing structures as function
arguments.

@lizrice

man bpf

eBPF programs can be written in a restricted C that is compiled (using
the clang compiler) into eBPF bytecode. Various features are omitted
from this restricted C, such as loops, global variables, variadic
functions, floating-point numbers, and passing structures as function
arguments.

[eBPF Helper functions] are used by eBPF programs to interact with the
system, or with the context in which they work. For instance, they can
be used to print debugging messages...

bpf_trace_printk()
bpf_get_current_uid_gid()
...

@lizrice

man bpf

Maps are a generic data structure for storage of different types of
data. They allow sharing of data between eBPF kernel programs, and also
between kernel and user-space applications.

@lizrice

man bpf

Maps are a generic data structure for storage of different types of
data. They allow sharing of data between eBPF kernel programs, and also
between kernel and user-space applications.

eBPF programs can be attached to different events.

@lizrice

@lizrice

Explore bpf syscalls in bpftrace

@lizrice

eBPF programs & maps

bpf(BPF_PROG_LOAD, …)
bpf(BPF_MAP_CREATE, …)

@lizrice

Attach custom code to an event

bpf(BPF_PROG_LOAD, …) = x
perf_event_open(…) = y
ioctl(y, PERF_EVENT_IOC_SET_BPF, x)

@lizrice

eBPF hello world

@lizrice

#!/usr/bin/python

from bcc import BPF

prog = """

int helloworld(void *ctx) {

 bpf_trace_printk("Hello world\\n");

 return 0;

}

"""

b = BPF(text=prog)

clone = b.get_syscall_fnname("clone")

b.attach_kprobe(event=clone, fn_name="helloworld")

b.trace_print()

github.com/lizrice/ebpf-beginners

@lizrice

#!/usr/bin/python

from bcc import BPF

from time import sleep

prog = """

BPF_HASH(clones);

int hello_world(void *ctx) {

 u64 uid;

 u64 counter = 0;

 u64 *p;

 uid = bpf_get_current_uid_gid() & 0xFFFFFFFF;

 p = clones.lookup(&uid);

 if (p != 0) {

 counter = *p;

 }

 counter++;

 clones.update(&uid, &counter);

 return 0;

}

"""

b = BPF(text=prog)

clone = b.get_syscall_fnname("clone")

b.attach_kprobe(event=clone, fn_name="helloworld")

while True:

 sleep(2)

 s = ""

 if len(b["clones"].items()):

 for k,v in b["clones"].items():

 s += "ID {}: {}\t".format(k.value, v.value)

 print(s)

 else:

 print("No entries yet")

github.com/lizrice/ebpf-beginners

@lizrice

ELF object file

○ eBPF opcodes
○ eBPF maps

kernel

verifier

BPF vm

maps

user space

bpf() system calls

BPF_PROG_LOAD
BPF_MAP_CREATE

@lizrice

ELF object file

○ eBPF opcodes
○ eBPF maps

kernel

verifier

BPF vm

maps

user space

bpf() system calls

BPF_PROG_LOAD
BPF_MAP_CREATE

Attach BPF program to
event

@lizrice

ELF object file

○ eBPF opcodes
○ eBPF maps

kernel

verifier

BPF vm

maps

user space

bpf() system calls

BPF_PROG_LOAD
BPF_MAP_CREATE

Attach BPF program to
event

Read / write maps

BPF_MAP_GET_NEXT_KEY
BPF_MAP_LOOKUP_ELEM
BPF_MAP_UPDATE_ELEM
BPF_MAP_DELETE_ELEM

@lizrice

Thank you

github.com/lizrice/ebpf-beginners

