
Introduction of Jenkins X

Overview
What does a classic CI/CD platform look
like and what are its shortcomings?

Introduction to Jenkins X and how it
addresses these shortcomings

Jenkins X architecture

Differences between classic Jenkins and
Jenkins X

A Typical CI/CD System

Local code
CI/CD Server

(Jenkins)
Production

A Typical CI/CD System

Local code
CI/CD Server

(Jenkins)
Production

A Typical CI/CD System

Local code
CI/CD Server

(Jenkins)
Production

A core problem with
traditional CI/CD platforms
like classic Jenkins is that

they are un-opinionated and
require heavy customization

Too Much Extra Scaffolding

Installation and configuration

Version control platform integration

Environment creation

Project creation

Custom pipelines

Packaging strategy

Registry provisioning

Deployment strategies

Running in the Cloud

Not cloud-native

Not cloud-native Static and resource
hungry

Running in the Cloud

Not cloud-native Static and resource
hungry

Provisioning new
agents

Running in the Cloud

Deployments may not be versioned in Git (GitOps)

Custom Deployment Strategy

Deployments may not be versioned in Git (GitOps)

They may not be observable and give free reign to the operations
cowboy

Custom Deployment Strategy

Deployments may not be versioned in Git (GitOps)

They may not be observable and give free reign to the operations
cowboy

They may not be declarative and idempotent

Custom Deployment Strategy

Pipeline Repetition

pipeline {

agent { docker { image 'maven:3.3.3

'

} }

stages {stage('build') {

steps {

sh ‘./mvn install'

}

}

stage(‘dockerize') {

steps {

sh ‘docker build'

}

}

}

}

Pipeline Repetition

pipeline {

agent { docker { image 'maven:3.3.3

'

} }

stages {stage('build') {

steps {

sh ‘./mvn install'

}

}

stage(‘dockerize') {

steps {

sh ‘docker build'

}

}

}

}

Same for all Maven builds

Pipeline Repetition

pipeline {

agent { docker { image 'maven:3.3.3

'

} }

stages {stage('build') {

steps {

sh ‘./mvn install'

}

}

stage(‘dockerize') {

steps {

sh ‘docker build'

}

}

}

}

Same for all Docker
projects

Jenkins X is an opinionated,
cloud-native CI/CD platform
built on top of Kubernetes

Jenkins X is an open-source automation platform
that helps teams automate the development,

testing, and deployment of cloud-native
applications. It is based on Jenkins, an open-source

automation server, and Tekton, a cloud-native
pipeline orchestration system.

Jenkins X is a powerful tool that can help teams
automate the development, testing, and deployment

of cloud-native applications. It is a good choice for
teams that are looking to adopt a CI/CD pipeline

and/or move to the cloud.

Jenkins X Feature

• Continuous integration and continuous delivery (CI/CD): Jenkins X can
automate the entire CI/CD pipeline, from building and testing code to
deploying it to production.
• GitOps: Jenkins X uses GitOps to manage its configuration. This means
that all of the configuration for Jenkins X is stored in a Git repository,
which makes it easy to track changes and collaborate with others.
• Pre-built pipelines: Jenkins X comes with a number of pre-built
pipelines that can be used to automate common tasks, such as building
and deploying Java applications.
• Out-of-the-box integrations: Jenkins X integrates with a number of
popular cloud-native tools, such as Kubernetes, Docker, and Helm.

Jenkins X Benefits

Here are some of the benefits of using Jenkins X:
• Reduced time to market: Jenkins X can help teams automate the CI/CD
pipeline, which can significantly reduce the time it takes to get new
features to market.
• Improved quality: Jenkins X can help teams improve the quality of their
code by automating the testing process.
• Increased collaboration: Jenkins X makes it easy for teams to
collaborate on code and deployments.
• Lower costs: Jenkins X can help teams lower the costs of development
and deployment by automating the process.

The Opinions of Jenkins X

Our application runs
on Kubernetes

Kubernetes

Don’t worry if you’re a beginner!

Container orchestration tool built for the cloud

–Unified declarative deployment model

–Service-discovery and load balancing

–Horizontal scaling

–Self-healing

Check out a Kubernetes Pluralsight course

The Opinions of Jenkins X

Our application runs
on Kubernetes

We use Helm and
Docker

The Opinions of Jenkins X

We use GitOps
Our application runs

on Kubernetes
We use Helm and

Docker

The Opinions of Jenkins X

We use GitOps
Our application runs

on Kubernetes
We use Helm and

Docker

Each language has a
re-useable default

structure (buildpack)

The Opinions of Jenkins X

We use GitOps
Our application runs

on Kubernetes
We use Helm and

Docker

Each language has a
re-useable default

structure (buildpack)

Pipelines are
extendable and re-

usable

The Opinions of Jenkins X

We use GitOps
Our application runs

on Kubernetes
We use Helm and

Docker

Each language has a
re-useable default

structure (buildpack)

Pipelines are
extendable and re-

usable

Its components are
elastic

GitHub
Docker, Nexus, &
Helm Registries

Environments

Prow (GitHub
Integration)

Tekton (Pipeline
engine)

High-level Jenkins X Architecture

Kubernetes Cluster

Jx CLI

GitHub
Docker, Nexus, &
Helm Registries

Environments

Prow (GitHub
Integration)

Tekton (Pipeline
engine)

High-level Jenkins X Architecture

Kubernetes Cluster

Jx CLI

GitHub
Docker, Nexus, &
Helm Registries

Environments

Prow (GitHub
Integration)

Tekton (Pipeline
engine)

High-level Jenkins X Architecture

Kubernetes Cluster

Jx CLI

GitHub
Docker, Nexus, &
Helm Registries

Environments

Prow (GitHub
Integration)

Tekton (Pipeline
engine)

High-level Jenkins X Architecture

Kubernetes Cluster

Jx CLI

GitHub
Docker, Nexus, &
Helm Registries

Environments

Prow (GitHub
Integration)

Tekton (Pipeline
engine)

High-level Jenkins X Architecture

Kubernetes Cluster

Jx CLI

GitHub
Docker, Nexus, &
Helm Registries

Environments

Prow (GitHub
Integration)

Tekton (Pipeline
engine)

High-level Jenkins X Architecture

Kubernetes Cluster

Jx CLI

Classic Jenkins

General purpose CI/CD server

Runs wherever you like

Requires a custom deployment and
packaging implementation

You must set up your own infra for
hosting environments

Pipeline and project creation
boilerplate

Was originally the pipeline engine for
Jenkins X

Jenkins X

Entire end-to-end CI/CD platform

Runs on Kubernetes

Applications use Helm and Docker for
packaging and deployments

Environments up and running by default
within Kubernetes

Sensible defaults for projects and
pipelines

No longer used by Jenkins X all and
replaced with Tekton

The Differences between Classic Jenkins and Jenkins X

GitHub
Docker, Nexus, &
Helm Registries

Environments

Prow (GitHub
Integration)

Tekton (Pipeline
engine)

The Difference to Classic Jenkins

Kubernetes Cluster

Jx CLI

Summary Classic CI/CD with Jenkins is not
opinionated enough and requires too
much customization

Jenkins X is an opinionated ecosystem
which gives you an entire end-to-end CI/
CD platform out of the box

Classic Jenkins was originally the pipeline
engine for Jenkins X, but is now no longer
part of it

	Slide 1: Introduction of Jenkins X
	Slide 2: Overview
	Slide 3: A Typical CI/CD System
	Slide 4: A Typical CI/CD System
	Slide 5: A Typical CI/CD System
	Slide 6
	Slide 7: Too Much Extra Scaffolding
	Slide 8: Running in the Cloud
	Slide 9: Running in the Cloud
	Slide 10: Running in the Cloud
	Slide 11
	Slide 12: Custom Deployment Strategy
	Slide 13: Custom Deployment Strategy
	Slide 14: Pipeline Repetition
	Slide 15: Pipeline Repetition
	Slide 16: Pipeline Repetition
	Slide 17: Jenkins X is an opinionated, cloud-native CI/CD platform built on top of Kubernetes
	Slide 18: Jenkins X is an open-source automation platform that helps teams automate the development, testing, and deployment of cloud-native applications. It is based on Jenkins, an open-source automation server, and Tekton, a cloud-native pipeline orches
	Slide 19: Jenkins X is a powerful tool that can help teams automate the development, testing, and deployment of cloud-native applications. It is a good choice for teams that are looking to adopt a CI/CD pipeline and/or move to the cloud.
	Slide 20: Jenkins X Feature
	Slide 21: Jenkins X Benefits
	Slide 22: The Opinions of Jenkins X
	Slide 23: Kubernetes
	Slide 24: The Opinions of Jenkins X
	Slide 25: The Opinions of Jenkins X
	Slide 26: The Opinions of Jenkins X
	Slide 27: The Opinions of Jenkins X
	Slide 28: The Opinions of Jenkins X
	Slide 29: High-level Jenkins X Architecture
	Slide 30: High-level Jenkins X Architecture
	Slide 31: High-level Jenkins X Architecture
	Slide 32: High-level Jenkins X Architecture
	Slide 33: High-level Jenkins X Architecture
	Slide 34: High-level Jenkins X Architecture
	Slide 35: The Differences between Classic Jenkins and Jenkins X
	Slide 36: The Difference to Classic Jenkins
	Slide 37: Summary

