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What this e-book covers and why
Azure Databricks is a fast, easy, and collaborative Apache® Spark™ based 

analytics platform with one-click setup, streamlined workflows, and the 

scalability and security of Microsoft Azure. 

Rather than describe what Azure Databricks does, we’re going to actually 

show you: in this e-book, you’ll find three scenarios where Azure Databricks 

helps data scientists take on specific challenges and what the outcomes look 

like. We will cover: 

• 	  A churn analysis model

• 	  A movie recommender engine

• 	  An intrusion detection demonstration

Notebooks explained
Notebooks on Azure Databricks are interactive workspaces for exploration 

and visualization and can be used cooperatively by users across multiple 

disciplines. With notebooks, you can examine data at scale, build and train 

models, and share your findings, iterating and collaborating quickly and 

effectively from experimentation to production. In this e-book, we’ll show 

how notebooks come to life with example code and results, giving you a 

clear picture of what it’s like to work in Azure Databricks.

Who should read this
This e-book was written primarily for data scientists, but will  

be useful for data engineers and business users interested  

in building, deploying, and visualizing data models.
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Getting started...............................................................	4

Churn analysis demo.................................................... 5

Movie recommendation engine............................. 16

Intrusion detection system demo..........................22

Conclusion.....................................................................30

Table of contents Three practical use cases with Azure Databricks



Three practical use cases with Azure Databricks

4

The demos in this e-book show how Azure Databricks notebooks help 

teams analyze and solve problems. You can read through the demos  

here, or you can try using Azure Databricks yourself  by signing up  

for a free account.

If you do want to try out the notebooks, once you’ve set up your free 

account, use the following initial setup instructions for any notebook.

Once you have selected Azure Databricks in the Azure Portal, you can 

start running it by creating a cluster. To run these notebooks, you can 

accept all the default settings in Azure Databricks for creating your 

cluster. The steps are: 

1. Click on the clusters icon in the left bar.

2. Select “Create Cluster.”

3. Input a cluster name.

4. Click the “Create Cluster” button. 

You are all set to import the Azure Databricks notebooks.  

To import the notebooks:

1. Click on the Workspace icon.

2. Select your directory in the user column.

3. Click on the dropdown for Import. Drop your notebooks files  

into this dialog.

4. In the notebook, click on the dropdown that says “Detached.”

5. Select the cluster you created in the previous step.

Getting started

https://azure.microsoft.com/en-us/free/services/databricks/
https://azure.microsoft.com/en-us/free/services/databricks/
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Churn analysis demo

Customer Churn also known as customer attrition, customer turnover,  

or customer defection, is the loss of clients or customers. Predicting  

and preventing customer churn is vital to a range of businesses.

In this notebook we will use a pre-built model on Azure Databricks  

to analyze customer churn. With this model, we can predict when  

a customer  is going to churn with 90% accuracy, so we can setup  

a report to show customers that are about to churn, and then provide  

a remediation strategy such as a special offer to try and prevent them 

from churning. In this example we are looking at cellular carriers, and  

the goal is to keep them from jumping to another carrier. This notebook:

• 	  Contains functionality that is relevant to Data Scientists,  

Data Engineers and Business users. 

• 	  Lends itself to a data driven storytelling approach,  

that demonstrates how notebooks can be used within  

Azure Databricks.

• 	  Uses a machine learning Gradient boosting algorithm 

implementation to analyze a Customer Churn dataset.

• 	  Illustrates a simple churn analysis workflow. We use Customer 

Churn dataset from the UCI Machine Learning Repository.

Three practical use cases with Azure Databricks Notebook 1
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Churn analysis demo

%sh
mkdir /tmp/churn
wget http://www.sgi.com/tech/mlc/db/churn.data -O /tmp/churn/churn.data
wget http://www.sgi.com/tech/mlc/db/churn.test -O /tmp/churn/churn.test
--2017-08-25 19:52:36--  http://www.sgi.com/tech/mlc/db/churn.data
Resolving www.sgi.com (www.sgi.com)... 192.48.178.134
Connecting to www.sgi.com (www.sgi.com)|192.48.178.134|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 376493 (368K) [text/plain]
Saving to: ‘/tmp/churn/churn.data’

     0K .......... .......... .......... .......... .......... 13%  131K 2s
    50K .......... .......... .......... .......... .......... 27%  650K 1s
   100K .......... .......... .......... .......... .......... 40%  336K 1s
   150K .......... .......... .......... .......... .......... 54%  672K 1s
   200K .......... .......... .......... .......... .......... 67% 57.9M 0s
   250K .......... .......... .......... .......... .......... 81%  667K 0s
   300K .......... .......... .......... .......... .......... 95% 69.0M 0s
   350K .......... .......                              100%  166M=0.8s

2017-08-25 19:52:37 (485 KB/s) - ‘/tmp/churn/churn.data’ saved 
[376493/376493]

--2017-08-25 19:52:37--  http://www.sgi.com/tech/mlc/db/churn.test
Resolving www.sgi.com (www.sgi.com)... 192.48.178.134
Connecting to www.sgi.com (www.sgi.com)|192.48.178.134|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 188074 (184K) [text/plain]
Saving to: ‘/tmp/churn/churn.test’

     0K .......... .......... .......... .......... .......... 27%  160K 1s
    50K .......... .......... .......... .......... .......... 54%  329K 0s
   100K .......... .......... .......... .......... .......... 81%  665K 0s
   150K .......... .......... .......... ...               100% 23.2M=0.5s

2017-08-25 19:52:37 (340 KB/s) - ‘/tmp/churn/churn.test’ saved 
[188074/188074]

Step 1: Ingest Churn Data to Notebook
We download the UCI dataset hosted at UCI site.

From the churn.names metadata file, we can see the meaning 

of the data columns:

• 	  state: discrete.

• 	  account length: continuous.

• 	  area code: continuous.

• 	  phone number: discrete.

• 	  international plan: discrete.

• 	  voice mail plan: discrete.

• 	  number vmail messages: continuous.

• 	  total day minutes: continuous.

• 	  total day calls: continuous.

• 	  total day charge: continuous.

• 	  total eve minutes: continuous.

• 	  total eve calls: continuous.

• 	  total eve charge: continuous.

• 	  total night minutes: continuous.

• 	  total night calls: continuous.

• 	  total night charge: continuous.

• 	  total intl minutes: continuous.

• 	  total intl calls: continuous.

• 	  total intl charge: continuous.

• 	  number customer service calls: continuous.

• 	  churned: discrete <- This is the label we wish to predict,  

indicating whether or not the customer churned.

Three practical use cases with Azure Databricks Notebook 1
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Churn analysis demo

%py
dbutils.fs.mkdirs(“/mnt/churn”)
dbutils.fs.mv(“file:///tmp/churn/churn.data”, “/mnt/churn/churn.data”)
dbutils.fs.mv(“file:///tmp/churn/churn.test”, “/mnt/churn/churn.test”)
 
Out[2]: True

from pyspark.sql.types import *

# The second step is to create the schema
schema =StructType([
    StructField(“state”,StringType(), False),
    StructField(“account_length”,DoubleType(), False),
    StructField(“area_code”,DoubleType(), False),
    StructField(“phone_number”,StringType(), False),
    StructField(“international_plan”,StringType(), False),
    StructField(“voice_mail_plan”,StringType(), False),
    StructField(“number_vmail_messages”,DoubleType(), False),
    StructField(“total_day_minutes”,DoubleType(), False),
    StructField(“total_day_calls”,DoubleType(), False),
    StructField(“total_day_charge”,DoubleType(), False),
    StructField(“total_eve_minutes”,DoubleType(), False),
    StructField(“total_eve_calls”,DoubleType(), False),
    StructField(“total_eve_charge”,DoubleType(), False),
    StructField(“total_night_minutes”,DoubleType(), False),
    StructField(“total_night_calls”,DoubleType(), False),
    StructField(“total_night_charge”,DoubleType(), False),
    StructField(“total_intl_minutes”,DoubleType(), False),
    StructField(“total_intl_calls”,DoubleType(), False),
    StructField(“total_intl_charge”,DoubleType(), False),
    StructField(“number_customer_service_calls”,DoubleType(), False), 
    StructField(“churned”,StringType(), False)
])

df = (spark.read.option(“delimiter”, “,”)
  .option(“inferSchema”, “true”)
  .schema(schema)
  .csv(“dbfs:/mnt/churn/churn.data”))

%fs ls /mnt/churn

path name size

dbfs:/mnt/churn/churn.data churn.data 376493

dbfs:/mnt/churn/churn.test churn.test	 188074

Mount the data locally. The second step is to create the schema in the Data Frame.

Three practical use cases with Azure Databricks Notebook 1
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Churn analysis demo

display(df)

state account_length area_code phone_number international_plan voice_mail_plan number_vmail_messages total_day_minutes total_day_calls total_day_charge total_eve_minutes

KS 128 415 382-4657 no yes 25 265.1 110 45.07 197.4

OH 107 415 371-7191 no yes 26 161.6 123 27.47 195.5

NJ 137 415 358-1921 no no 0 243.4 114 41.38 121.2

OH 84 408 375-999 yes no 0 299.4 71 50.9 61.9

OK 75 415 330-6626 yes no 0 166.7 113 28.34 148.3

AL 118 510 391-8027 yes no 0 223.4 98 37.98 220.6

MA 121 510 355-9993 no yes 24 218.2 88 37.09 348.5

MO 147 415 329-9001 yes no 0 157 79 26.69 103.1

LA 117 408 335-4719 no no 0 184.5 97 31.37 351.6

WV 141 415 330-8173 yes yes 37 258.6 84 43.96 222

IN 65 415 329-6603 no no 0 129.1 137 21.95 228.5

RI 74 415 344-9403 no no 0 187.7 127 31.91 163.4

Three practical use cases with Azure Databricks Notebook 1
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Churn analysis demo

Step 2: Enrich the Data to Get Additional 
Insights to Churn Dataset
We count the number of data points and separate the churned from  

the unchurned.

We do a filter and count operation to find the number of customers  

who churned.

The data is converted to a parquet file, which is a data format that is well 

suited to analytics on large data sets.

# Because we will need it later...
from pyspark.sql.functions import *
from pyspark.sql.types import *

numCases = df.count()
numChurned = df.filter(col(“churned”) == ‘ True.’).count()

df.repartition(1).write.parquet(‘/mnt/databricks-wesley/demo-data/ 
insurance/churndata’)

numCases = numCases
numChurned = numChurned
numUnchurned = numCases - numChurned
print(“Total Number of cases: {0:,}”.format( numCases ))
print(“Total Number of cases churned: {0:,}”.format( numChurned ))
print(“Total Number of cases unchurned: {0:,}”.format( numUnchurned ))
Total Number of cases: 3,333
Total Number of cases churned: 483
Total Number of cases unchurned: 2,850

Three practical use cases with Azure Databricks Notebook 1
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Churn analysis demo

Step 3: Explore Churn Data
We create a table on the parquet data to so we can analyze it at scale  

with Spark SQL.

%sql 

    Drop table temp_idsdata;
    
    CREATE TEMPORARY TABLE temp_idsdata
    USING parquet
    OPTIONS (
      path “/mnt/databricks-wesley/demo-data/insurance/churndata”
    )
OK

	 Churn by statewide breakup using databricks graph

%sql
SELECT state, count(*) as statewise_churn FROM temp_idsdata where 
churned= “ True.” group by state

	 Churn by statewide breakup using python matplotlib

import matplotlib.pyplot as plt
importance = sqlContext.sql(“SELECT state, count(*) as statewise_churn 
FROM temp_idsdata where churned= ‘ True.’ group by state”)
importanceDF = importance.toPandas()
ax = importanceDF.plot(x=“state”, y=“statewise_
churn”,lw=3,colormap=‘Reds_r’,title=‘Importance in Descending Order’, 
fontsize=9)
ax.set_xlabel(“protocol”)
ax.set_ylabel(“num_hits”)
plt.xticks(rotation=12)
plt.grid(True)
plt.show()
display()

Three practical use cases with Azure Databricks Notebook 1
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Churn analysis demo

Step 4: Visualization
Show the distribution of the account length.

display(df.select(“account_length”).orderBy(id))

df.printSchema() 

root
 |-- state: string (nullable = true)
 |-- account_length: double (nullable = true)
 |-- area_code: double (nullable = true)
 |-- phone_number: string (nullable = true)
 |-- international_plan: string (nullable = true)
 |-- voice_mail_plan: string (nullable = true)
 |-- number_vmail_messages: double (nullable = true)
 |-- total_day_minutes: double (nullable = true)
 |-- total_day_calls: double (nullable = true)
 |-- total_day_charge: double (nullable = true)
 |-- total_eve_minutes: double (nullable = true)
 |-- total_eve_calls: double (nullable = true)
 |-- total_eve_charge: double (nullable = true)
 |-- total_night_minutes: double (nullable = true)
 |-- total_night_calls: double (nullable = true)
 |-- total_night_charge: double (nullable = true)
 |-- total_intl_minutes: double (nullable = true)
 |-- total_intl_calls: double (nullable = true)
 |-- total_intl_charge: double (nullable = true)
 |-- number_customer_service_calls: double (nullable = true)
 |-- churned: string (nullable = true)

Three practical use cases with Azure Databricks Notebook 1
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Churn analysis demo

Step 5: Model Creation
Create a table.

	 Model Fitting and Summarization

from  pyspark.ml.feature import StringIndexer

indexer1 = (StringIndexer()
                   .setInputCol(“churned”)
                   .setOutputCol(“churnedIndex”)
                   .fit(df))

Create an array of the data.

indexed1 = indexer1.transform(df)
finaldf = indexed1.withColumn(“censor”, lit(1))

from pyspark.ml.feature import VectorAssembler
vecAssembler = VectorAssembler()
vecAssembler.setInputCols([“account_length”, “total_day_calls”,  “total_eve_calls”, “total_night_calls”, “total_intl_calls”,  “number_customer_service_calls”])
vecAssembler.setOutputCol(“features”)
print vecAssembler.explainParams()

from pyspark.ml.classification import GBTClassifier

aft = GBTClassifier()
aft.setLabelCol(“churnedIndex”)

print aft.explainParams()
inputCols: input column names. (current: [‘account_length’, ‘total_day_calls’, ‘total_eve_calls’, ‘total_night_calls’, ‘total_intl_calls’, ‘number_customer_service_calls’])
outputCol: output column name. (default: VectorAssembler_402dae9a2a13c5e1ea7f__output, current: features)
cacheNodeIds: If false, the algorithm will pass trees to executors to match instances with nodes. If true, the algorithm will cache node IDs for each instance. 
Caching can speed up training of deeper trees. Users can set how often should the cache be checkpointed or disable it by setting checkpointInterval. (default: False)
checkpointInterval: set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache will get checkpointed every 10 iterations. (default: 10)

Three practical use cases with Azure Databricks Notebook 1
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	 Building model on train data

from pyspark.ml import Pipeline

# We will use the new spark.ml pipeline API. If you have worked with scikit-learn this will be very familiar.
lrPipeline = Pipeline()

# Now we’ll tell the pipeline to first create the feature vector, and then do the linear regression
lrPipeline.setStages([vecAssembler, aft])

# Pipelines are themselves Estimators -- so to use them we call fit:
lrPipelineModel = lrPipeline.fit(finaldf)

	 Using model for data predicition

predictionsAndLabelsDF = lrPipelineModel.transform(finaldf)
confusionMatrix = predictionsAndLabelsDF.select(‘churnedIndex’, ‘prediction’)

Churn analysis demo

featuresCol: features column name. (default: features)
labelCol: label column name. (default: label, current: churnedIndex)
lossType: Loss function which GBT tries to minimize (case-insensitive). Supported options: logistic (default: logistic)
maxBins: Max number of bins for discretizing continuous features.  Must be >=2 and >= number of categories for any categorical feature. (default: 32)
maxDepth: Maximum depth of the tree. (>= 0) E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2 leaf nodes. (default: 5)
maxIter: max number of iterations (>= 0). (default: 20)
maxMemoryInMB: Maximum memory in MB allocated to histogram aggregation. If too small, then 1 node will be split per iteration, and its aggregates may 
exceed this size. (default: 256)
minInfoGain: Minimum information gain for a split to be considered at a tree node. (default: 0.0)
minInstancesPerNode: Minimum number of instances each child must have after split. If a split causes the left or right child to have fewer than 
minInstancesPerNode, the split will be discarded as invalid. Should be >= 1. (default: 1)
predictionCol: prediction column name. (default: prediction)
seed: random seed. (default: 2857134701650851239)
stepSize: Step size to be used for each iteration of optimization (>= 0). (default: 0.1)
subsamplingRate: Fraction of the training data used for learning each decision tree, in range (0, 1]. (default: 1.0)

Three practical use cases with Azure Databricks Notebook 1
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Churn analysis demo

	 Confusion Matrix for the churn model

from pyspark.mllib.evaluation import MulticlassMetrics
metrics = MulticlassMetrics(confusionMatrix.rdd)
cm = metrics.confusionMatrix().toArray()

	 Confusion Matrix in matplotlib

%python
import matplotlib.pyplot as plt
import numpy as np
import itertools
plt.figure()
classes=list([0,1])
plt.imshow(cm, interpolation=‘nearest’, cmap=plt.cm.Blues)
plt.title(‘Confusion matrix’)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=0)
plt.yticks(tick_marks, classes)

fmt =  ‘.2f’
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
    plt.text(j, i, format(cm[i, j], fmt),
             horizontalalignment=“center”,
             color=“white” if cm[i, j] > thresh else “black”)
plt.tight_layout()
plt.ylabel(‘True label’)
plt.xlabel(‘Predicted label’)
plt.show()
display()

	 Performance Metrics of the model

print metrics.falsePositiveRate(0.0)
print metrics.accuracy 

0.0514705882353
0.891689168917

Results Interpretation
The plot to the right shows Index used to measure each of the  

churn type.

The customer churn index using gradient boosting algorithm  

gives an accuracy of close to 89%

Three practical use cases with Azure Databricks Notebook 1
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Movie recommendation  
engine

Recommendation engines are used across many industries,  

from external use on retail sites, to internal use on employee sites.  

A recommendation engine delivers plans to end users based  

on points that matter to them.

This demonstration is a simple example of a consumer using a movie 

website to select a movie to watch. Recommendation engines look  

at historical data on what people have selected, and then predict 

the selection the user would make. This movie recommendation  

engine notebook:

• 	  Is built on the Azure Databricks platform and uses a machine 

learning ALS recommendation algorithm to generate 

recommendations on movie choices. 

• 	  Demonstrates a movie recommendation analysis workflow,  

using movie data from the Kaggle Dataset.

• 	  Provides one place to create the entire analytical application, 

allowing users to collaborate with other participants.

• 	  Allows users to see ongoing accuracy that might drive 

improvements.

Three practical use cases with Azure Databricks Notebook 2
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Movie recommendation engine

Step 1: Ingest Movie Data to Notebook
We will extract the movie dataset hosted at Kaggle.

Select 10 random movies from the most rated, as those as likely to be 

commonly recognized movies. Create Azure Databricks Widgets to allow 

a user to enter in ratings for those movies.

Change the values on top to be your own personal ratings  

before proceeding.

sqlContext.sql(“””
    select 
      movie_id, movies.name, count(*) as times_rated 
    from 
      ratings
    join 
      movies on ratings.movie_id = movies.id
    group by 
      movie_id, movies.name, movies.year
    order by 
      times_rated desc
    limit
      200
    “””
).registerTempTable(“most_rated_movies”)

if not “most_rated_movies” in vars():
  most_rated_movies = sqlContext.table(“most_rated_movies”).rdd.
takeSample(True, 10)
  for i in range(0, len(most_rated_movies)):
    dbutils.widgets.dropdown(“movie_%i” % i, “5”, [“1”, “2”, “3”, “4”, “5”], 
most_rated_movies[i].name)

from datetime import datetime
from pyspark.sql import Row
ratings = []
for i in range(0, len(most_rated_movies)):
  ratings.append(
    Row(user_id = 0,
        movie_id = most_rated_movies[i].movie_id,
        rating = float(dbutils.widgets.get(“movie_%i” %i))))
myRatingsDF = sqlContext.createDataFrame(ratings)

Three practical use cases with Azure Databricks Notebook 2
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Movie recommendation engine

Step 2: Enrich the Data and Prep  
for Modeling

Step 3: Model Creation
Fit an ALS model on the ratings table.

%sql select min(user_id) from ratings

from pyspark.sql import functions

ratings = sqlContext.table(“ratings”)
ratings = ratings.withColumn(“rating”, ratings.rating.cast(“float”))

from pyspark.ml.recommendation import ALS

als = ALS(maxIter=5, regParam=0.01, userCol=“user_id”, itemCol=“movie_id”, 
ratingCol=“rating”)
model = als.fit(training.unionAll(myRatingsDF))

(training, test) = ratings.randomSplit([0.8, 0.2])

min(user_id)

1

Three practical use cases with Azure Databricks Notebook 2
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%sql select user_id, movie_id, rating, prediction from predictions

user_id movie_id rating prediction

4227 148 2 2.6070688

1242 148 3 2.5327067

1069 148 2 3.8583977

2507 148 4 3.8449543

53 148 5 3.940087

216 148 2 2.2447278

2456 148 2 3.5586698

4169 463 2 2.7173512

4040 463 1 2.1891994

Movie recommendation engine

Step 4: Model Evaluation
Evaluate the model by computing Root Mean Square error on the test set.

predictions = model.transform(test).dropna()
predictions.registerTempTable(“predictions”)

from pyspark.ml.evaluation import RegressionEvaluator

evaluator = RegressionEvaluator(metricName=“rmse”, labelCol=“rating”, 
predictionCol=“prediction”)

rmse = evaluator.evaluate(predictions)

displayHTML(“<h4>The Root-mean-square error is %s</h4>” % str(rmse))

	 The Root-mean-square error is 0.897631907219

Three practical use cases with Azure Databricks Notebook 2
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display(sqlContext.sql(“select user_id, movie_id, rating, prediction 
from mySampledMovies”))

user_id movie_id rating prediction

0 5 NaN

0 5 NaN

0 4 NaN

0 5 NaN

0 4 NaN

0 5 NaN

0 3 NaN

0 4 NaN

Movie recommendation engine

Step 5: Model Testing
Let’s see how the model predicts for you.

mySampledMovies = model.transform(myRatingsDF)
mySampledMovies.registerTempTable(“mySampledMovies”)

my_rmse = evaluator.evaluate(mySampledMovies)

displayHTML(“<h4>My Root-mean-square error is %s</h4>” % str(my_rmse))

	 My Root-mean-square error is 0.418569215012

from pyspark.sql import functions
df = sqlContext.table(“movies”)
myGeneratedPredictions = model.transform(df.select(df.id.alias( 
“movie_id”)).withColumn(“user_id”, functions.expr(“int(‘0’)”)))
myGeneratedPredictions.dropna().registerTempTable(“myPredictions”)

%sql 
SELECT 
  name, prediction 
from 
  myPredictions 
join 
  most_rated_movies on myPredictions.movie_id = most_rated_movies.movie_id
order by
  prediction desc
LIMIT
  10

name prediction

Star Trek: The Wrath of Khan	 6.1421475

Star Wars: Episode IV - A New Hope	 5.3213224

Raiders of the Lost Ark	 5.295201

Casablanca 5.278496

Star Trek IV: The Voyage Home 5.251287

Results Interpretation
The table shown above gives the top ten recommended movie choices for 

the user based on the predicted outcomes using the movie demographics 

and the ratings provided by the user.

Three practical use cases with Azure Databricks Notebook 2
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Intrusion detection 
system demo

Intrusion Detection System (IDS) is a device or software 

 application that monitors a network or systems for malicious 

 activity or policy violations.

This notebook demonstrates how a user can get a better detection of 

web threats. We show how to monitor network activity logs in real-time 

to generate suspicious activity alerts, support a security operations 

center investigation into suspicious activity and develop network 

propagation models to map network surface and entity movement to 

identify penetration points. This notebook:

• 	  Is a pre-built solution on top of Apache® Spark™, written in Scala 

inside the Azure Databricks platform.

• 	  Uses a logistic regression to identify intrusions by looking  

for deviations in behavior to identify new attacks. 

• 	  Includes a dataset with a subset of simulated network  

traffic samples.

• 	  Demonstrates how the first three insights are gained through  

the visualization.

• 	  Allows data scientists and data engineers to improve the accuracy 

by getting more data or improving the model.

Three practical use cases with Azure Databricks Notebook 3
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Intrusion detection system demo

Step 1: Ingest IDS Data to Notebook
The CIDDS-001 data set.zip can be downloaded from CIDDS site.

Unzip the data and upload the CIDDS-001>traffic>ExternalServer>*.csv 

from unziped folder to Databricks notebooks.

val idsdata = sqlContext.read.format(“csv”)
  .option(“header”, “true”)
  .option(“inferSchema”, “true”)
  .load(“/FileStore/tables/ctrdsk051502399641231/”)

display(idsdata)

val newNames = Seq(“datefirstseen”, “duration”, “proto”, “srcip”,“srcpt”,“dstip”,“dstpt”,“packets”,“bytes”,“flows”,“flags”,“tos”,“transtype”,“label”,“attackid”,“attackdescription”)
val dfRenamed = idsdata.toDF(newNames: _*)
val dfReformat = dfRenamed.select(“label”,“datefirstseen”, “duration”, “proto”, 
“srcip”,“srcpt”,“dstip”,“dstpt”,“packets”,“bytes”,“flows”,“flags”,“tos”,“transtype”,“attackid”,“attackdescription”)
newNames: Seq[String] = List(datefirstseen, duration, proto, srcip, srcpt, dstip, dstpt, packets, bytes, flows, flags, tos, transtype, label, attackid, attackdescription)
dfRenamed: org.apache.spark.sql.DataFrame = [datefirstseen: timestamp, duration: double ... 14 more fields]
dfReformat: org.apache.spark.sql.DataFrame = [label: string, datefirstseen: timestamp ... 14 more fields]

Date first seen Duration Proto Src IP Addr Src Pt Dst IP Addr Dst Pt Packets Bytes Flows Flags Tos class attackType attackID attackDescription

2017-03-15T00:01:16.632+0000 0 TCP 192.168.100.5 445 192.168.220.16 58844 1 108 1 .AP... 0 normal --- --- ---

2017-03-15T00:01:16.552+0000 0 TCP 192.168.100.5 445 192.168.220.15 48888 1 108 1 .AP... 0 normal --- --- ---

2017-03-15T00:01:16.551+0000 0.004 TCP 192.168.220.15 48888 192.168.100.5 445 2 174 1 .AP... 0 normal --- --- ---

2017-03-15T00:01:16.631+0000 0.004 TCP 192.168.220.16 58844 192.168.100.5	 445 2 174 1 .AP... 0 normal --- --- ---

2017-03-15T00:01:16.552+0000 0 TCP 192.168.100.5 445 192.168.220.15 48888 1 108 1 .AP... 0 normal --- --- ---

2017-03-15T00:01:16.631+0000 0.004 TCP 192.168.220.16 58844 192.168.100.5	 445 2 174 1 .AP... 0 normal --- --- ---

2017-03-15T00:01:17.432+0000 0 TCP 192.168.220.9 37884 192.168.100.5 445 1 66 1 .AP... 0 normal --- --- ---
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Intrusion detection system demo

Step 2: Enrich the Data to Get Additional 
Insights to IDS Dataset
We create a temporay table from the file location “/tmp/wesParquet” 

in paraquet file format.

Parquet file format is the prefered file format since it’s optimized  

for the notebooks in the Azure Databricks platform.

%sql 

    CREATE TEMPORARY TABLE temp_idsdata
    USING parquet
    OPTIONS (
      path “/tmp/wesParquet”
    )
Error in SQL statement: TempTableAlreadyExistsException:  
Temporary table ‘temp_idsdata’ already exists;

%sql
select min(trim(bytes)) as min_bytes,max(trim(bytes)) as max_
bytes,avg(trim(bytes)) as avg_bytes from temp_idsdata

Calculate statistics on the Content Sizes returned.

min_bytes max_bytes avg_bytes

1.0 M 99995 1980.1018585682032

Step 3: Explore IDS Data by Capturing the 
Type of Attacks on the Network

	 Analysis of Attack type caught

%sql

select attacktype, count(*) as the_count from temp_idsdata where 
attacktype <> ‘---’ group by attacktype order by the_count desc
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Step 4: Visualization
Visualizing and find outliers.

View a list of IPAddresses that has accessed the server more than N times.

	 Explore the Source IP used for attacks

%sql
-- Use the parameterized query option to allow a viewer to dynamically specify a value for N.
-- Note how it’s not necessary to worry about limiting the number of results.
-- The number of values returned are automatically limited to 1000.
-- But there are options to view a plot that would contain all the data to view the trends.
SELECT srcip, COUNT(*) AS total FROM temp_idsdata GROUP BY srcip HAVING total > $N order by total desc
 
Command skipped

	 Explore Statistics about the protocol used for attack using Spark SQL

%sql
-- Display a plot of the distribution of the number of hits across the endpoints.
SELECT Proto, count(*) as num_hits FROM temp_idsdata GROUP BY Proto ORDER BY num_hits DESC
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	 Explore Statistics about the protocol used for attack using Matplotlib

%python
import matplotlib.pyplot as plt
importance = sqlContext.sql(“SELECT Proto as protocol, count(*) as num_
hits FROM temp_idsdata GROUP BY Proto ORDER BY num_hits DESC”)
importanceDF = importance.toPandas()
ax = importanceDF.plot(x=“protocol”, y=“num_hits”, 
lw=3,colormap=‘Reds_r’,title=‘Importance in Descending Order’, fontsize=9)
ax.set_xlabel(“protocol”)
ax.set_ylabel(“num_hits”)
plt.xticks(rotation=12)
plt.grid(True)
plt.show()
display()

%r
library(SparkR)
library(ggplot2)
importance_df  = collect(sql(sqlContext,‘SELECT Proto as protocol, 
count(*) as num_hits FROM temp_idsdata GROUP BY Proto ORDER BY num_hits 
DESC’))
ggplot(importance_df, aes(x=protocol, y=num_hits)) + geom_
bar(stat=‘identity’) + scale_x_discrete(limits=importance_
df[order(importance_df$num_hits), “protocol”]) + coord_flip()
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Step 5: Model Creation

import org.apache.spark.ml.linalg.Vector;
import org.apache.spark.ml.feature._;
import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.feature.StringIndexer

case class Data(label: Double, feature: Seq[Double])

val indexer1 = new StringIndexer()
                   .setInputCol(“proto”)
                   .setOutputCol(“protoIndex”)
                   .fit(dfReformat)

val indexed1 = indexer1.transform(dfReformat)

val indexer2 = new StringIndexer()
                   .setInputCol(“label”)
                   .setOutputCol(“labelIndex”)
                   .fit(indexed1)

val indexed2 = indexer2.transform(indexed1)

val features = indexed2.rdd.map(row => 
Data(
   row.getAs[Double](“labelIndex”),   
   Seq(row.getAs[Double](“duration”),row.getAs[Double](“protoIndex”))
)).toDF

val assembler = new VectorAssembler()
  .setInputCols(Array(“duration”, “protoIndex”))
  .setOutputCol(“feature”)

val output = assembler.transform(indexed2)
println(“Assembled columns ‘hour’, ‘mobile’, ‘userFeatures’ to vector 
column ‘features’”)

output.select(“feature”, “labelIndex”).show(false)

val labeled = output.rdd.map(row => 
LabeledPoint(
   row.getAs[Double](“labelIndex”),   
   row.getAs[org.apache.spark.ml.linalg.Vector](“feature”)
)).toDF

val splits = labeled randomSplit Array(0.8, 0.2)

val training = splits(0) cache
val test = splits(1) cache

val algorithm = new LogisticRegression()
val model = algorithm fit training

val prediction = model.transform(test)

val predictionAndLabel = prediction.rdd.zip(test.rdd.map(x => 
x.getAs[Double](“label”)))

predictionAndLabel.foreach((result) => println(s“predicted label: 
${result._1}, actual label: ${result._2}”))
Assembled columns ‘hour’, ‘mobile’, ‘userFeatures’ to vector column ‘features’
+------------+-----------+
|feature    	|labelIndex|
+------------+-----------+
|(2,[],[])		 |0.0       |
|(2,[],[])		 |0.0       |
|[0.004,0.0]	 |0.0       |
|[0.004,0.0]	 |0.0       |
|(2,[],[])  	 |0.0       |
|[0.004,0.0]	 |0.0       |
|(2,[],[])  	 |0.0       |
|(2,[],[])  	 |0.0       |
|(2,[],[])  	 |0.0       |
|(2,[],[])  	 |0.0       |
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|(2,[],[])		 |0.0       |
|(2,[],[])		 |0.0       |
|[0.082,0.0]	 |0.0       |
|[0.083,0.0]	 |0.0       |
|[0.089,0.0]	 |0.0       |
|[0.083,0.0]	 |0.0       |
|[0.089,0.0]	 |0.0       |
|[0.086,0.0]	 |0.0       |
|[0.0,1.0]		 |0.0       |
|[0.0,1.0]		 |0.0       |
+------------+-----------+
only showing top 20 rows

warning: there were two feature warnings; re-run with -feature for 
details
import org.apache.spark.ml.linalg.Vector
import org.apache.spark.ml.feature._
import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.feature.StringIndexer
defined class Data
indexer1: org.apache.spark.ml.feature.StringIndexerModel = strIdx_8d1e73586ec7
indexed1: org.apache.spark.sql.DataFrame = [label: string, 
datefirstseen: timestamp ... 15 more fields]
indexer2: org.apache.spark.ml.feature.StringIndexerModel = strIdx_
cf17935c04d4
indexed2: org.apache.spark.sql.DataFrame = [label: string, 
datefirstseen: timestamp ... 16 more fields]
features: org.apache.spark.sql.DataFrame = [label: double, feature: 
array<double>]
assembler: org.apache.spark.ml.feature.VectorAssembler = vecAssembler_
c4fe808dd912
output: org.apache.spark.sql.DataFrame = [label: string, datefirstseen: 
timestamp ... 17 more fields]
labeled: org.apache.spark.sql.DataFrame = [label: double, features: vector]
splits: Array[org.apache.spark.sql.Dataset[org.apache.spark.sql.Row]] 
= Array([label: double, features: vector], [label: double, features: 
vector])
training: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = 
[label: double, features: vector]

test: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [label: 
double, features: vector]
algorithm: org.apache.spark.ml.classification.LogisticRegression = 
logreg_96ba18adfd6f
model: org.apache.spark.ml.classification.LogisticRegressionModel = 
logreg_96ba18adfd6f
prediction: org.apache.spark.sql.DataFrame = [label: double, features: 
vector ... 3 more fields]
predictionAndLabel: org.apache.spark.rdd.RDD[(org.apache.spark.sql.Row, 
Double)] = ZippedPartitionsRDD2[610] at zip at command-622314:55

val loss = predictionAndLabel.map { case (p, l) =>
  val err = p.getAs[Double](“prediction”) - l
  err * err
}.reduce(_ + _)

val numTest = test.count()
val rmse = math.sqrt(loss / numTest) 
loss: Double = 407383.0
numTest: Long = 1687519
rmse: Double = 0.491334336329945

Results Interpretation
The plot above shows Index used to measure each of the attack type.

1. The most common type of attack were Denial of Service (DoS),  

followed by port scan.

2. IP 192.168.220.16 was the origin for most of the attacks, amounting  

to at least 14% of all attacks.

3. Most of the Atacks used TCP protocol.

4. As you can infer from the RMSE on running the model on the test 

data to predict the type of network attack we got a good accuracy 

of 0.4919.
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Find relevant insights  
in all your data
As you can see from the preceding scenarios, Azure Databricks was 

designed to give you more ways to enhance your insights and solve 

problems. It was built to work for you and your team, giving you more 

avenues for collaboration, more analytics power, and a faster way to  

solve the problems unique to your business. We hope you found it  

helpful and will try using Azure Databricks yourself.

Get started 
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