2200psSchool

Lets Learn, Share & Practice D;;Op;

O

o

o

O

O

O

O

Day-1

e Understanding Serverless Functions

Contextualizing Serverless
Key Elements of Serverless Functions
Looking at Serverless Function Providers

Demo Overviews - What Are You Building?

e Working with AWS

Introduction to the AWS Free Tier
AWS Free Tier Service Walkthrough
Overview of AWS Identity and Access Management (IAM)

Creating and Managing AWS Identity and Access Management Policies

AWS Lambda JAVAS8 Training Course Online

Curriculum 5 Days

Day - 2

e Starting with Lambda Functions

O

©)

@)

O

Considerations and Limitations for Lambda Functions
Lambda Prerequisites
Creating and Configuring Your First Lambda Function

Monitoring and Alerting for Your First Lambda Function

e Using Lambda and Third Party APIs

O

O

O

Planning Function Scope and Dependencies
Credential Storage with the AWS Key Management Service
Gathering APl Keys and Preparing Your Environment

Working with External Libraries, Sensitive Credentials, and Your Lambda
Function Package

Deploying Your Function Package and Configuring Your Twitter Bot




e Lambda Expressions and Functional Interfaces e Using ELB to Scale Applications
o Project and Resource Overview o Lambda Expression: Introduction, Instances of Anonymous Classes
o Installing Jinja and Configuring IAM and SES o Lambda Expression: Passing Code as a Parameter
o Uploading Templates to S3 and Creating Cloudwatch Events with the AWS o Let Us Write Our First, Simple Lambda Expressions

Command Line ) L
o Lambda Expression: Remarks and Precisions

o Creating a Dynamic Lambda Handler . )
o Method References: A First Example with an Instance Method

o Testing Your Lambda Function with the AWS Command Line ) )
o Method References: A Second Example with a Static Method

o Understanding Function Package Setup

o Function Deployment and Configuration with the AWS Command Line



e Writing Data Processing Functions with Lambdas in Java

o

o

O

Introduction to the Module

What Is a Functional Interface? The Predicate Example

How to Implement a Functional Interface with a Lambda Expression
How Does the Compiler Recognize the Type of a Lambda Expression?
A Lambda Is Still an Interface with Usable Methods

Functional Interface: The Complete and Exact Definition

How to Use the @Functionallnterface Annotation

The Four Categories of the java.util.function Package

First Category: The Consumers

Second Category: The Supplier

Third Category: The Functions

Fourth Category: The Predicates

Functional Interfaces for Java Primitive Types

Introduction to the Live Coding Section: The Predicate Example
Writing and Using a First, Simple Predicate Lambda Expression
Chaining Predicates with the AND Boolean Operation

Adding a and() Method on the Predicate Functional Interface
Implementing the and() Default method on the Predicate Interface
Adding a or() Default Method on the Predicate Interface

Creating Predicates with a Static Call on a Functional Interface

Making the isEqualsTo() Method Generic of the Predicate Interface

e Data Processing Using Lambdas and the Collection Framework

@)

@)

O

Introduction to the Module

First Methods on Iterable, Collection and List

First Method on Map: forEach()

More Methods on Map: getOrDefault()

More Methods on Map: putlfAbsent()

More Methods on Map: replace() and replaceAll()

New Pattern on Map: remove()

New Patterns on Map: The compute() method

New Patterns on Map: computelfAbsent(), computelfPresent()
Building Maps of Maps and Maps of Lists with computelfAbsent()
New Pattern on Map: The merge() method

Using merge() to Merge Two Maps Together

Live Coding Session Introduction, forEach() in Action

Methods removelf(), replaceAll(), sort() in Action

Setting Default Value for map.get(): getOrDefault()

Adding Default key / value pairs: putlfAbsent, computelfAbsent
Merging Maps with the map.merge() Method

Merging Maps: Analysis of the Result

Live Coding and Module Wrap-up




Implementing Map Filter Reduce Using Lambdas and Collections

o

(@)

(@)

Introduction to the Module

Computing the Average of People Older than 20, Taken From a List
Map / filter / reduce: A Precise Explanation

A First Implementation, in the JDK7 Way

A Closer Look at the Reduction Step: How Does it Work?
Parallel Implementation of the Reduction Step

First Caveat: Non-associative Reduction Operations

How to Detect Non-associative Reduction Operations

Second Caveat: Reduction of a Singleton

Second Caveat: Reduction of a Set with Several Elements
Second Caveat: Reduction That Do Not Have Identity Element
Live Coding: Setting up the Environment

Simulating Parallel Computation of a Non-associative Reduction
Non-associative Reduction: The Average Reduction Operation
Computing a Max: Reduction with No Identity Element

Live Coding Wrap-up

Using Optional to Handle Reductions with No Identity Element
Wrap-up on the Reduction Step

Implementation in the JDK7 Way: a Closer Look

CPU Load and Memory Footprint Evaluations

Example of an all Match Reduction Operation: Lost Optimizations
Why is this First, Naive Implementation Should be Avoided

A First Glimpse at the Stream API

e The Stream API, How to Build Streams, First Patterns

o

(@]

Introduction to the Module

A First Technical Definition of the Stream Interface

First Definitions of the Concept of Stream

The Notion of Unbounded Stream

How to Build Streams: Empty Streams, Singletons, varargs

How to Build Streams: The Generator and Iterator Pattern

How to Build Streams on Strings, Regular Expressions, and Text Files
The Stream.Builder Pattern

The map / filter / reduce Pattern Written with a Stream

A Second Example of the ap / filter / reduce Pattern on Streams
Intermediate and Terminal Calls on Streams: peek() and forEach()
How to Tell an Intermediate Call from a Terminal Call

Selecting Ranges of Data in Streams: skip() and limit()

Simple Reductions: Matchers, Short-circuiting Reductions
Finder Reductions, Use of Optional

Example of Finder Reductions: find First(), find Any()

General Reductions: Use of the reduce () Method

Live Coding Session Introduction

Example of a First Simple Stream Built on a vararg

Building a Stream: The Generate Pattern, Use of Limit()
Building a Stream: The Iterate Pattern

Building Streams of Random Numbers Using Random.ints()

Live Coding Session Wrap-up




