
 GitOps Essential Training

Curriculum 5 Days

Day - 1

Introduction to GitOps
 Introduction

o Course Introduction

 GitOps
o GitOps Workflow

o GitOps Architecture

 Demonstrations
o Prepare Local Kubernetes Cluster

o Install Helm and Tiller

o Install Flux Operator

o Review CloudAcademy GitOps Demo GitHub Repo

o Test Container Deployment

o Update Deployment Manifest and Sync

o Update Container Image and Sync

o Configuration Drift and Sync

 Required knowledge
o Git: Committing code and creating pull requests

o Kubernetes: Deploying a service to Kubernetes and basic checks with kubectl

o Docker: Pushing an image to a Docker repository

o CI/CD: GitOps reverses the traditional understanding of continuous
integration/continuous development.

 Core concepts: A quick introduction
o Add your content...Immutable infrastructure

o Infrastructure as code

o Orchestration

o Convergence

o CI/CD

 What GitOps is not
o GitOps is not infrastructure as code.

o GitOps doesn't replace continuous integration (CI).

 The use case: Deploying a highly available microservice
o Deploying a microservice to Kubernetes, with all the surrounding

infrastructure to make it available

 Implementing GitOps for Kubernetes in AWS
o Use Weave Flux and Helm to implement GitOps methodologies in an AWS -

hosted Kubernetes application by using Git as a sing le source of truth for
Kubernetes deployments.

 Logging in to the Amazon Web Services Console
o Connecting to the CloudAcademy Web based Containers IDE Port 8080

o Reviewing a DevOps Pipeline for Kubernetes in AWS

o Deploying a Kubernetes Application with AWS Cod ePipeline

o Implementing GitOps for Kubernetes in AWS

o Validating GitOps for Kubernetes in AWS

Day - 2

Part 2: Setting up the Tools
 Kubernetes

o In advance: Setting up a cluster from scratch is time -consuming, even if you
use a managed solution l ike EKS. Pre-allocating a cluster per person is
something you can do in advance.

 Preparation: Setting up kubectl
o Every participant should have credentials to connect to the cluster using

kubectl.

 Preparation: Access a cluster through kubectl/k9s.
o Check running pods.

o Check deployments.

 Repository

 Preparation: Infrastructure repository

o An empty repository in GitHub/GitLab to use for deploying infrastructure

 Application repository
o Strictly speaking, you don't need to separate the application and

infrastructure, but i t's easier to understand what goes where this way.

o A sample application that serves a web server with a hello world response as
the baseline (NodeJS-based, for instance)

 ArgoCD

 Why ArgoCD?

o ArgoCD is tightly integrated with Kubernetes and closely follows the GitOps
mindset. Therefore, it's a good tool to showcase GitOps.

 Exercise: Add ArgoCD to the cluster.
o Create namespace.

o Deploy ArgoCD to the cluster.

o Access ArgoCD using the CLI.

Day - 3

Part 3: Deploying a Microservice
 Exercise: Prepare a simple microservice to be deployed in k8s.

o Build sample application as a Docker container (Docker file can be provided in
advance)

o Push service to a Docker registry (cloud -native, docker. io, or quay.io)

 Exercise: Create a k8s deployment.
o Create a Kubernetes deployment definit ion in code for the applic ation (here's a

sample).

o Push code to infrastructure repository.

o Create an application in ArgoCD.

o This t ime, you'll use the ArgoCD CLI so you can see that part. You'll move to use Git
from here on, which is more aligned to GitOps.

o Sync the application.

o Again, use the CLI.

o Test: Use kubectl check to ensure that deployment works.

 Automated synchronization
o Pull versus push: How ArgoCD can read from a repository and automatically apply

the changes

o Exercise: Activate synchronization so that further changes happen when you push
code to the infrastructure repository.

 Exercise: Create a k8s service. (A deployment alone doesn't expose the
microservice, so let's build on that.)
o Create service definit ion.

 Wrap-up: This covers the workflow of deploying an application and then
performing updates and changes on it.
o This is the core of GitOps!

o There are also other, more advanced use cases to cover.

 Pull request
o This is an opportunity to introduce the pull request aspe ct of the flow. You

can extend pull requests so that extra checks are performed, using
something like GitHub Actions.

o Implementing CI with something like GitHub Actions isn't part of the
exercise, although it's something that you can complete as an extra e xercise.
(See the bonus section at the end of this post.)

o Test: Carry out a kubectl check to prove that service was deployed.

 Exercise: Create a load balancer. (You still can't access service from the
outside.)
o Create load balancer k8s definition for cloud provider.

o Pull request

o Test: Curl to load balancer address to ensure that service is actually online.

 Exercise: Update the application.
o Change something in the application, such as the body of the response of a

route in the application.

o Rebuild container with a new tag and push it to Docker registry.

o Update k8s deployment to use new tag.

o Pull request

o Test: New version of the app should be deployed.

 Exercise: Update the infrastructure. (Why do this? So you can
demonstrate that changing the application and the infrastructure results
in blurry boundaries.)
o Update k8s deployment to be highly available (more than one replica).

o Pull request

o Test: kubectl shows that there are multiple pods running.

Day - 4

Part 4: Promoting Changes Through Different Environments
 In advance: Prepare a second cluster.

o As with the first cluster, this is something to have prepared in advance.

 Preparation: Register the cluster in ArgoCD to allow deployments to it.

 From development to production
o Which options are there to represent different stages?

o This is an open discussion, as there's no set re cipe to do environment promotion,
with different options:

o Use different infrastructure repositories.

o Use different folders in the same infrastructure repository.

o Use branches.

 Exercise: Promotion of a version
o Set up a second cluster (production) to read from a different folder.

o Copy the infrastructure created for the first folder into this one.

o Pull request

o Test: Second cluster should have the service available as well.

 Exercise: Sealed secrets
o Depending on time, this can be treated as theory or as an exercise.

Furthermore, you can split it in two depending on how much time you have.

o Modify microservice to read the secret and make it available through a
request.

o Provision secrets in the infrastructure repository.

o Use secrets from either the cluster or the application.

o Install the sealed secrets controller.

o Inject an encrypted secret in the infrastructure reposi tory.

o Modify Kubernetes deployment to inject a secret into the microservice.

 Canary release
o Theory only (This can be a good lead-in to a discussion of the merits and

tradeoffs of different deployment strategies.)

 Exercise: Error handling (This exercise shows that failure in infra
deployment is expected and is handled through code changes—not
panicked actions!)
o Introduce an error in the hello world applicat ion (this results in a thrown

exception instead of starting the webserver).

o Rebuild the container with a new tag and push it to Docker registry.

o Update k8s deployment to use new tag.

o Pull request

o Test: Confirm with kubectl that deployment is failing.

o Revert a failed change through code.

 Accessing resources
o kubectl shouldn't replace observability, such as logging and monitoring

(similar to secure shell—SSH—into a production server)

 Secrets
o No plaintext secrets should ever be stored in Git.

 Vault
o This is theory only because it's probably too much to do for a practical

exercise.

 Exercise: Blue/Green
o Enable Argo Rollouts in cluster.

o Test: Observe rolling deployment with kubectl.

o Install argo-rollouts plugin for kubectl.

o Create rollout to apply to existing microservice.

Day - 5

Part 7: Recap
 Core concepts: Infra as code, Git as the source of truth, pull model, converging changes

o In advance: Setting up a cluster from scratch is time -consuming, even if you use a managed solution l ike EKS. Pre -allocating a cluster per person is something you can do
in advance.

 Next steps
o Automated promotion (If a deployment to a staging environment suc ceeds, then trigger a deployment to production.)

o Observability (microservices that export metrics, logging aggregator, and monitoring)

 Preparation: Access a cluster through kubectl/k9s.

o Check running pods.

o Check deployments.

