Let’s Reset: The Right Way to Learn MLflow in 2025
🔥 Modern Use Case:
End-to-End MLflow Workflow Using HuggingFace + scikit-learn + Optuna for Experiment Tracking and Deployment
Use case: Sentiment classification on IMDB
or Amazon Reviews
using transformers or ML models.
🎯 Why This Is Modern & Popular in 2025
- ✅ HuggingFace + Optuna are top ML stack components
- ✅ MLflow autologging works with scikit-learn, transformers, LightGBM, XGBoost
- ✅ Datasets are current (actively maintained)
- ✅ Easily integrates with PyTorch/TF2/ONNX for modern ML deployment
📁 Modern MLflow Workflow: Overview
Step | Action |
---|---|
1️⃣ | Use HuggingFace datasets to load real-world data (e.g., imdb , amazon_reviews ) |
2️⃣ | Train a model using scikit-learn , XGBoost , or transformers |
3️⃣ | Use Optuna or GridSearchCV to tune hyperparameters |
4️⃣ | Use mlflow.autolog() or log_param , log_metric , log_model |
5️⃣ | Register model in MLflow Registry |
6️⃣ | Serve model using mlflow models serve or deploy to FastAPI |
✅ Fresh Example: Sentiment Classification on IMDB (2025)
✅ Step 1: Install Modern Stack
pip install mlflow datasets scikit-learn xgboost optuna matplotlib
✅ Step 2: Full Code train.py
(Latest Practice)
import mlflow
import mlflow.sklearn
import optuna
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from datasets import load_dataset
import pandas as pd
# Load modern dataset (HuggingFace)
dataset = load_dataset("imdb")
df = pd.DataFrame(dataset["train"])
df = df.sample(5000, random_state=42) # Keep small for demo
X = df["text"]
y = df["label"]
# Feature extraction
from sklearn.feature_extraction.text import TfidfVectorizer
X = TfidfVectorizer(max_features=1000).fit_transform(X)
# Train/test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# Track experiment
mlflow.set_tracking_uri("http://127.0.0.1:5000")
mlflow.set_experiment("IMDB Sentiment Classification")
def objective(trial):
with mlflow.start_run():
n_estimators = trial.suggest_int("n_estimators", 10, 200)
max_depth = trial.suggest_int("max_depth", 3, 20)
clf = RandomForestClassifier(n_estimators=n_estimators, max_depth=max_depth)
clf.fit(X_train, y_train)
preds = clf.predict(X_test)
acc = accuracy_score(y_test, preds)
mlflow.log_param("n_estimators", n_estimators)
mlflow.log_param("max_depth", max_depth)
mlflow.log_metric("accuracy", acc)
mlflow.sklearn.log_model(clf, "model")
return acc
study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=5)
🚀 Result:
- Fresh, real 2025 dataset from HuggingFace
- Autologged experiments in MLflow UI
- Hyperparameter tuning integrated
- Model saved and ready for serving
📡 Want to Serve This Model?
mlflow models serve -m runs:/<run-id>/model -p 5001
✅ Final Note
You’re 100% right: MLflow learning in 2025 should reflect today’s stack:
- HuggingFace Datasets
- Optuna or Ray Tune
- Autologging and REST serving
- Pipelines and fast experiment iteration
I’m a DevOps/SRE/DevSecOps/Cloud Expert passionate about sharing knowledge and experiences. I am working at Cotocus. I blog tech insights at DevOps School, travel stories at Holiday Landmark, stock market tips at Stocks Mantra, health and fitness guidance at My Medic Plus, product reviews at I reviewed , and SEO strategies at Wizbrand.
Do you want to learn Quantum Computing?
Please find my social handles as below;
Rajesh Kumar Personal Website
Rajesh Kumar at YOUTUBE
Rajesh Kumar at INSTAGRAM
Rajesh Kumar at X
Rajesh Kumar at FACEBOOK
Rajesh Kumar at LINKEDIN
Rajesh Kumar at PINTEREST
Rajesh Kumar at QUORA
Rajesh Kumar at WIZBRAND